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Abstract

Machine learning is increasingly used in government programs to identify and support
the most vulnerable individuals, prioritizing assistance for those at greatest risk over op-
timizing aggregate outcomes. This paper examines the welfare impacts of prediction in
equity-driven contexts, and how they compare to other policy levers, such as expanding bu-
reaucratic capacity. Through mathematical models and a real-world case study on long-term
unemployment amongst German residents, we develop a comprehensive understanding of
the relative effectiveness of prediction in surfacing the worst-off. Our findings provide clear
analytical frameworks and practical, data-driven tools that empower policymakers to make
principled decisions when designing these systems.

1 Introduction

Faced with pressure to modernize, large bureaucracies are increasingly adopting risk prediction
tools to improve efficiency and better serve their populations. Beyond optimizing aggregate
outcomes, investments in these programs often aim to address historical inequities and prioritize
the needs of the worst-off. For instance, in 2012, Wisconsin launched a risk prediction system
to explicitly address deep racial disparities in academic achievement and improve high school
graduation rates amongst underserved students. More broadly, such systems are particularly rel-
evant in settings where normative considerations demand prioritizing those at the greatest risk
of adverse outcomes, and where well-established downstream interventions can meaningfully
benefit these vulnerable individuals.

From a design perspective, these risk predictors are challenging to evaluate because their
value cannot be assessed without reference to the broader social context. The value of a risk
predictor is ultimately determined by its impact on bottom-line welfare (e.g., graduation rates)
and how these welfare impacts compare to those of other bureaucratic alternatives [Johnson
and Zhang, 2022]. For example, to understand whether investments in prediction are truly
valuable in Wisconsin, we need to assess how much better the risk predictor is at identifying
at-risk students relative to existing policies. We also need to understand whether sophisticated
prediction systems yield higher graduation rates amongst the underserved than structural
investments in teacher training or better facilities.

Equity-driven programs are pervasive in applications like social housing, poverty targeting,
and unemployment assistance. In these contexts, many government agencies are exploring how
algorithmic prediction systems may be an improvement over their current profiling processes
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[Körtner and Bonoli, 2023]. Yet, due to the absence of an overarching framework that allows the
systematic assessment of the relative impacts of different design decisions, efforts to improve
predictive accuracy are rarely studied in concert with other policy levers such as expanding
screening capacity.

Building on recent work in a budding area of learning in resource allocation contexts,
we develop tools to evaluate the design and broader impact of prediction systems that aim to
identify the worst-off members of a population. We develop a holistic understanding of the value
of statistical prediction in these contexts through theoretical insights into foundational statistical
models and a real-world case study on identifying long-term unemployment. Our results
establish clear theoretical and empirical criteria characterizing the relative value of core design
decisions within these problems. Specifically, we identify when improving prediction provides
a higher marginal benefit in helping an institution identify the worst-off. This is compared
to alternative strategies, such as keeping prediction accuracy fixed, expanding bureaucratic
capacity and screening a larger population.

Interestingly, we show that prediction is a first and last-mile effort. The impacts of improving
prediction are always outweighed by those of expanded screening capacity, except for when the
system explains either none or almost all of the variance in outcomes. While this relationship is
moderated by costs, it still largely holds when prediction improvements are more cost-efficient
than measures that expand access.

These results are counternarrative to current efforts in empirical public policy where agen-
cies focus on incremental improvements within complex prediction systems, starting from
the solid baseline performances of their current processes [Desiere et al., 2019, Desiere and
Struyven, 2021]. Furthermore, implementing more complex profiling systems at scale comes
with operational costs (such as staff training and data collection) which need to be contextual-
ized by the cost-benefit ratio of expanding access. Our empirical case study explicates how to
systematically assess the relative gains of these design components in a real-world application
setting, translating formal insights into critical guidance for designers of these systems.

Our results provide theoretically principled and empirically grounded tools for policymakers
to make informed decisions when designing prediction systems to identify the worst-off. They
also offer a practical framework to help determine how much should be invested in prediction
relative to other interventions and how to decide when prediction systems are “good enough"
for deployment.

1.1 Overview of Framework and Contributions

Setup. We consider a scenario where a decision-maker seeks to identify worst-off members of
a population, as determined by a real-valued welfare metric Y ∈R, with the goal of prioritizing
them for further screening and support. The population is represented by a distribution D over
features X and outcomes Y . The planner aims to identify all individuals whose outcomes Y fall
below some threshold t(β), Y ⩽ t(β). Here, β ∈ [0,1] is a parameter (quantile) that determines
the size of the population that is at risk, Pr[Y ⩽ t(β)] = β. For instance, in poverty prediction, Y
is income, and the goal is to identify everyone whose income is below some value.

To solve this problem, the social planner has access to data (X,Y ) ∼ D and builds a screen-
ing policy π : X → {0,1} that determines whether an individual with features x is screened
from the broader population to see if they belong to the worst-off group. Learning plays
a fundamental role since the optimal policy is to predict each person’s expected outcome,
f (x) = Ŷ ≈ E [Y | X = x] and screen those in the bottom fraction, πf (x) = 1{f (x) ⩽ t(α)}.
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Unpacking this further, α ∈ [0,1], is a design parameter that determines how many people
the planner can screen, Pr[f (x) ⩽ t(α)] = α. The amount of resources α need not be equal to
the size of the target population β. For instance, an organization might have normative goal
of identifying the poorest 5% of individuals, but only have the resource to screen 1% of the
population. Conversely, they might realize that predictions are not perfect, and that to identify
the bottom 5%, they might have to screen 10% of the population.

Given a predictor f , a screening budget of α, and a target parameter β, the value of a
prediction system is equal to the fraction of the at-risk population that it identifies,

V (α,f ;β) = PrD[f (x) ⩽ t(α) | Y ⩽ t(β)],

where again t(α), t(β) are chosen to respect the design constraints. We focus on this notion of
value since our driving motivation is to analyze domains like unemployment assistance, or
poverty prediction, where there is no harm in the prediction system raising a false positive
(π(x) = 1,Y > t(β)). By and large, the true value of the system is equal to the extent that it helps
an institution efficiently identify the needy amongst a large, diverse population.

The focus of our work is to build a holistic understanding of prediction in these contexts
by evaluating the relative impacts of different design parameter, such as expanding screening
capacity or improving prediction, on this notion of bottom-line value V (α,f ;β). We develop
these insights through theoretical investigations as well as in-depth empirical case study.

Mathematical Results. Following Perdomo [2024], we formalize the relative value of predic-
tion for the worst-off by studying the prediction-access ratio or PAR. Intuitively, the PAR measures
the relative change in value achieved by optimizing different policy levers:

PAR =
Marginal Value of Expanding Access
Marginal Value of Better Prediction

.

While initially developed to specifically study the value of prediction in allocation problems
where allocating goods to individuals had heterogeneous effects, here we extend this concept to
analyze the value of prediction in a related, but distinct, setting where we aim to identify the
worst-off.

Small values of the PAR (i.e. PAR < 1) indicate that small improvements in prediction yield
a much larger (relative) impact in the ability to target the worst-off than a small expansion in
screening capacity. The opposite is true if the PAR is greater than 1. Calculating this quantity is
a fundamental step in deciding which policy lever makes economic sense. In particular, the PAR
tells us how much we should be willing to pay for improvements in prediction versus expanding
access. Once we factor in costs, it is easy to decide what to focus on.

To build intuition for the value of prediction in identifying the worst-off, we examine the
prediction access ratio in one of the most basic statistical models. The outcomes Y are Gaussian,
and the learner has access to a predictor f (x) = Ŷ such that the residuals Y − Ŷ are also Gaussian.
While extremely simple, the model yields surprisingly precise numerical insights that exactly
match up in our real-world case study, where, of course, none of these assumptions hold.

Our first result identifies when local improvements in prediction have the highest impact:

Theorem 1.1 (Informal). If α is at least a constant, the local improvements in V with respect to R2

diverge in two regimes: (1) R2→ 1 and α = β, or (2) R2→ 0. In both cases, the prediction-access
ratio satisfies PAR(α,β) = 0.
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Predictions have the highest marginal impact at low and high R2-values, making them a
first- and last-mile effort. Our second result characterizes when the opposite is true. We prove
that whenever screening capacities are severely limited relative to the size of the population one
aims to identify α≪ β , the benefits of increasing α are overwhelming. Furthermore, it shows
that the impacts of improving access are still relatively larger exactly in the regime where most
current systems operate: f explains ≈ 20% of the variance and α is equal to, or even slightly
larger, than β.

Theorem 1.2 (Informal). If the predictor f explains an R2 fraction of the variance, where R2 is at least
a constant, then the prediction access ratio is at least Ω(α−1/(1−R2)). Furthermore, if 0.15 ⩽ R2 ⩽ 0.85
and α ⩽ β or 0.2 ⩽ R2 ⩽ 0.5, β ⩾ 0.15, and α ⩽ 0.5 then the local prediction-access ratio is at least 1.

Empirical Results. We complement our theoretical discussion by presenting a methodology
for policymakers to evaluate the prediction-access ratio in practice. Using a real-world adminis-
trative dataset on hundreds of thousands of jobseekers in Germany, we show that our theoretical
findings generalize to a more complex, real-world context that closely resembles algorithmic
profiling systems widely implemented in many countries. Notably, our results reveal that when
considering non-local improvements, expanding screening capacity has an even greater impact
compared to enhancing prediction accuracy.

1.2 Related Work

Machine learning is increasingly used in the public sector to allocate support by predicting
individuals at risk of adverse outcomes [Fischer-Abaigar et al., 2024], with applications spanning
a wide range of problem domains [Desiere et al., 2019, Blumenstock, 2016, Perdomo et al.,
2023, Chan et al., 2012, Potash et al., 2015, Chouldechova et al., 2018]. A large methodological
literature draws on decision theory, operations research, economics, and machine learning to
learn allocation rules from data [Elmachtoub and Grigas, 2022, Kitagawa and Tetenov, 2018,
Manski, 2004, Fernández-Loría and Provost, 2022], with recent work in causal inference focusing
on learning treatment policies from observational data [Athey and Wager, 2021, Kallus, 2021].
However, many decision-makers rely on separately trained predictive risk scoring-systems
to solve “prediction policy problems” [Kleinberg et al., 2015]. Recently, this work has been
extended using causal inference to train and evaluate these systems [Coston et al., 2023, Guerdan
et al., 2023, Boehmer et al., 2024].

The widespread use of risk-scoring systems has raised concerns regarding their tradeoffs,
pitfalls, and validity [Wang et al., 2024, Coston et al., 2023, Fischer-Abaigar et al., 2024]. Recent
work explores alternative design choices — such as employing aggregate rather than individual-
level predictions [Shirali et al., 2024], balancing immediate needs with information-gathering
[Wilder and Welle, 2024], and introducing randomization [Jain et al., 2024] — to improve
downstream outcomes. Perdomo [2024] studies the prediction-access ratio under both linear
and probit models, with the latter closely related to our work. While they focus on binary
welfare outcomes, we adopt a continuous welfare metric and a distinct policy objective: rather
than evaluating changes in overall expected welfare, we measure the fraction of truly worst-off
individuals who are identified.
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2 Formal Framework

We start by formally defining our screening problem.

Definition 2.1 (Screening Problem). The screening problem seeks to identify a decision rule π : R→
{0,1} that maximizes the fraction of the worst-off individuals who are screened, subject to resource
constraints α ∈ (0,1) that limit the proportion of the population the social planner can screen.

max
π : R→{0,1}

E

[
π(Ŷ ) = 1 | Y ⩽ F−1

Y (β)
]

s.t. E
[
π(Ŷ )

]
⩽ α

The quantile F−1
Y (β) denotes the welfare cutoff that identifies the worst-off β ∈ (0,1) fraction of the

population.

Given perfect knowledge of the welfare outcomes Ŷ = Y , the optimal decision policy is
simple: rank individuals based on their outcomes Y and intervene in the bottom α-fraction of
the population. In the general case, we have:

Proposition 1. The optimal policy π∗ : R→ {0,1} to solve the screening problem (Definition 2.1)
is equal to π∗(Ŷi) = 1{s(Ŷi) ⩾ F−1

s (1−α)} where F−1
s (1−α) is the (1−α)-quantile of s(Ŷ ) = Pr[Y ⩽

F−1
Y (β) | Ŷ ].

Policy Value in Gaussian Setting. For the theoretical investigation, we assume independent,

identically distributed residuals ε = Y − Ŷ iid∼ N (0,γ2). In this setting, the screening problem
can be solved by ranking individuals in ascending order of their predicted outcomes Ŷ and
screening the bottom α-fraction (see Proposition 4), achieving the policy value:

V (π∗) = Pr[Ŷ ⩽ F−1
Ŷ

(α) | Y ⩽ F−1
Y (β)] (1)

In addition, we assume welfare outcomes Y ∼N (µ,η2). Because the residuals ε are independent
of Ŷ , this implies that Y and Ŷ follow a bivariate normal distribution.

Proposition 2. (Policy Value in Gaussian Setting) Let Y − Ŷ iid∼ N (0,γ2) and Y ∼N (µ,η2), then the
value V (π∗) of the optimal screening policy π∗ is given by

V (π∗) = V (α,β,R2) =
Φ2

(
Φ−1 (α) ,Φ−1 (β) ;ρ

)
β

(2)

where Φ2 (·) denotes the bivariate standard normal CDF with correlation ρ =
√
η2 −γ2/η and Φ−1 (·) is

the quantile function of the standard normal distribution.

In this model, the goodness of the predictions Ŷ are entirely captured by the coefficient of
determination R2, which equals the squared correlation ρ2 between Y and Ŷ .

Our analysis extends to the log-normal distribution logY ∼N (µ,η2) under a a multiplicative
error model Y = Ŷ · u with logu ∼ N (0,γ2). Taking logarithms, leads to logY = log Ŷ + logu.
Since the logarithm is strictly increasing, the ordering of Y and Ŷ is preserved under transfor-
mation. This allows us to apply the same framework to the log-transformed variables logY and
log Ŷ . This extension is particularly useful because many welfare outcomes, such as income
distributions [Clementi and Gallegati, 2005], can be approximated by a log-normal distribution.
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(c) Improving Predictions

Figure 1: Screening Policy in Gaussian Setting. (Left) Probability of being screened for an individual
with a specific welfare outcome Y , given R2 = 0.25, α = 0.2, and β = 0.2. The dashed line represents
the unconstrained oracle policy, which perfectly screens those in need. (Middle) Policy with expanded
screening capacity, where α increases by ∆α = 0.2. (Right) Policy under an improved prediction model
with R2 +∆R2 , where ∆R2 = 0.2. The shaded area under Pr[Ŷ ⩽ F−1

Ŷ
(α) | Y = y], weighted by fY (y) and

normalized by Pr[Y ⩽ F−1
Y (β)], corresponds to the policy value.

Visualization. For a given screening capacity α and R2 value, we can illustrate the correspond-
ing screening policy by plotting the probability Pr

{
Ŷ ⩽ F−1

Ŷ
(α) | Y = y

}
that an individual with

welfare outcome Y = y is screened. As shown in Figure 1, lower values of Y correspond to higher
probabilities of being screened. We focus on evaluating how effectively the screening policy
identifies individuals in the worst-off segment of the population (i.e., on the left side of the β
cutoff).

3 Theoretical Results

The decision-maker has (at least) two pathways to raise the policy value, which we refer to as
policy levers:

– Expanding Access Increasing the screening threshold from α to α +∆α. If full screening

were possible (α = 1), the β-fraction would be fully identified, as V (π∗) =
Φ2(Φ−1(α),Φ−1(β);ρ)

β =
Φ(Φ−1(β))

β = 1.

– Improving Predictions Investing in better predictive models, modeled as increasing R2 to
R2 +∆R2 . Perfect predictions (R2 = 1) leads to optimal allocation of available capacities:
V (π∗) = 1

βΦ
(
min

(
Φ−1 (α) ,Φ−1 (β)

))
. If α ⩽ β then V (π∗) = α

β .

Figure 1 showcases improvements in access and prediction. Increasing capacity expands the
fraction of the population screened, while improving R2 shifts probability mass across the β
threshold, enhancing targeting accuracy.

Following Perdomo [2024], a key quantity of interest is the prediction-access ratio (PAR),
which quantifies the relative improvements in policy value from enhancing predictions versus
improving access to screening. Specifically, the PAR is defined as:

PAR =
V (α +∆α ,β,R

2)−V (α,β,R2)
V (α,β,R2 +∆R2)−V (α,β,R2)

(3)
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In other words, the PAR can inform a social planner how much more they should be willing
to pay for improvements in screening capacity relative to prediction. For example, a PAR > 2
implies that expanding the screening capacity by ∆α yields at least twice the increase in policy
value compared to investing in improved predictions by ∆R2 . Consequently, the social planner
should prioritize investments in screening capacity, provided the costs of doing so are not more
than double those of improving predictions.

3.1 Theoretical Bounds for the Prediction-Access Ratio

In our setting, direct calculation of the PAR is challenging due to the policy value being
analytically intractable and the problem featuring strong non-linearities. We derive bounds for
specific cases and regimes that we consider particularly insightful, with a focus on marginal
local improvements. In our empirical investigation, we find that the main results generalize
well to a more complex, real-world setting.

What should priorities be if screening is very limited?

Theorem 3.1 (PAR for Small Screening Capacities). For any 0 < R2 < 1, ∆R2 ,∆α > 0 and 0 < β ⩽ 0.5
there exists a threshold t(β,R2,∆R2) such that for any α +∆α ⩽ t, PAR(α,R2,∆α ,∆R2) is at least

∆α

∆R2

√
R2(1−R2)

(
5.1 ·αΦ−1 (1−α)

)− 1
1−R2 +o(1)

where o(1) goes to zero as α approaches zero.

Suppose the available screening capacity α+∆α is very small (α+∆α ≪ β), and assume there
is a baseline level of predictability (i.e., R2 is bounded away from 0). Then Theorem 3.1 implies
that the PAR can become very large. Specifically, for small α, Φ−1 (1−α) grows asymptotically
like

√
log(1/α). Consequently, the polynomial growth of α−1/(1−R2) drives the PAR to increase

rapidly as α decreases. It follows that in the scarce capacity regime, expanding the screening
capacity has a far greater impact than improvements in prediction accuracy.

When does prediction have the highest impact?

Theorem 3.2 (Maximally Effective (Local) Prediction Improvements). Let 0 < β < 1 be fixed and
0 < α < 1. Consider the points that maximize the local rate of change in policy value V with respect to
improvements in R2:

(α∗,R
2
∗ ) = argmax

(α,R2)∈(0,1)×(0,1)
lim
∆→0

V (α,β,R2 +∆)−V (α,β,R2)
∆

The local improvements in V diverge — and are maximized — in two regimes: (1) R2
∗ → 1, α∗ = β,

and (2) R2
∗ → 0. For both regimes, setting ∆R2 = ∆α = ∆, the local prediction-access ratio satisfies

lim∆→0 PAR(α,β,∆)→ 0.

According to Theorem 3.2, marginal improvements in prediction are most impactful in two
distinct regimes. First, when predictive capacity is very low, even a small initial investment can
lead to disproportionately large improvements, provided that a minimal baseline of screening
capacity is present. Second, as R2 approaches one, further marginal improvements can also
have a significant relative impact, specifically around the point where the screening capacity α
matches the requirements for screening the entire β-segment of the population. See Figure 2.
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Figure 2: Numerical Simulation of the Prediction-Access Ratio (PAR), Equation 3, for ∆R2 =∆α =0.01
and β = 0.2. (Left) The PAR values. (Right) 1/4 × PAR, representing a cost ratio of 1/4. Each point
represents a screening capacity α (x-axis) and R2 value (y-axis), with the color bar showing the PAR
clipped to the range [0.5,2.0]. Dotted black lines represent PAR=1, where improvements in α and R2 are
equally effective. The purple line marks the region in the (α,R2) space where the policy value V (α,β,R2)
exceeds 0.9.

When are small increases in screening capacity more impactful than improving predictions?

Proposition 3 (PAR for Local Improvements). Let R2, β, and α satisfy either R2 ∈ (0.15,0.85),
β ∈ (0.03,0.5), and α ⩽ β, or R2 ∈ (0.2,0.5), β ⩾ 0.15, and α ⩽ 0.5. If ∆R2 = ∆α = ∆, then
lim∆→0 PAR(α,β,∆) ⩾ 1.

We find that the PAR remains above one as long as α ⩽ β and R2 is not too extreme. For
larger β values (i.e., β ⩾ 0.15) the PAR stays above one even for large α provided R2 remains
in a moderate range. Crucially, this represents the standard parameter regime in which most
allocation programs operate, characterized by a moderate baseline of predictions and resource
levels comparable to β.

Numerical Simulations. We complement our theoretical investigation with numerical simula-
tions of the PAR for different α, β and R2 values (see Figure 2). Consistent with our theoretical
results, the PAR becomes large for small screening capacities (α≪ β) and remains above one
for α ⩽ β, provided a small baseline level of predictive performance has been established.
The bounds in Proposition 3 are conservative, with PAR > 1 observed for a broad range of R2

values. Prediction improvements are particularly impactful when R2 is small. Although the
PAR falls below one in the high-R2 and high-α regime, allocation is nearly perfect, making
further improvements a “last mile” effort.

Discussion. We found several insights relevant to policymakers aiming to iteratively improve
a screening system. First, establishing a baseline level of predictive performance is usually a
good starting point. Once this is achieved, expanding the screening capacity becomes the next
priority. For very small capacities, Theorem 3.1 tell us that the PAR can increase significantly,
making investments in screening capacity highly impactful.

Generally, expanding capacity to at least the level where everyone in need could hypotheti-
cally be screened (α ⩾ β) is likely cost-efficient. Once both screening capacity and predictive
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accuracy are high and the allocation system is close to optimal, improvements in prediction
become relatively more valuable again for perfecting the system. However, this regime may
rarely be reached in practice.

Looking at the PAR in isolation only tells part of the story: how much more should a decision-
maker be willing to pay for one marginal improvement over an other. Investments may carry
very different (marginal) costs Cα(∆α) and CR2(∆R2) that depend heavily on the operational
context. In practice, one might evaluate a cost-benefit ratio PAR × CR2 (∆R2 )

Cα(∆α) to decide which
investment is most efficient. Some costs might be relatively straightforward to quantify, such as
the additional cash required to include more individuals in a transfer program, or fixed costs
for additional data. Other costs, however, are less trivial, e.g. training staff to work with new
and more complex models or investing in better computational infrastructure.

In Figure 2, we display the PAR for a cost ratio of 1/4. As expected, the regions where
investing in R2 is more efficient expand, and some of the earlier nonquantitative bounds no
longer apply. Nevertheless, the key insights remain consistent: when screening capacities are
small, investments in expanding them are very effective, while improvements in R2 are more
important when predictive accuracy is low.

4 Empirically Evaluating the PAR

While our theory offers broad intuition when expanding screening capacity or improving
predictions is most effective, policymakers need practical tools for their own systems. To
support this, we develop a methodology to compute and interpret the prediction-access ratio,
helping social planners identify the most efficient policy levers for their unique problem context.

Policy Value. As before, we define the allocation policy’s value as the probability that the
worst-off individuals are successfully identified:, i.e. V (α,β) = Pr[Ŷ ⩽ F−1

Ŷ
(α) | Y ⩽ F−1

Y (β)]. In
practice, this can be measured using a recall-like metric, capturing the proportion of truly
at-risk individuals screened by the policy.

V (α,β) ≈

∑n
i=1 1{Ŷi ⩽ F−1

Ŷ ,n
(α)}1{Yi ⩽ F−1

Y ,n(β)}∑n
i=1 1{Yi ⩽ F−1

Y ,n(β)}

Increasing Screening Capacity. Given a chosen ∆α the policy improvement can be directly com-
puted V (α+∆α ,β)−V (α,β) by recalculating the empirical policy value at the new threshold. For
example, in cash transfer programs [Blumenstock, 2016], a key question is how many resources
α∗ are required to reach a specified fraction p of poor households, i.e. α∗ = infα∈(0,1){α : V (α,β) ⩾
p}.

Improving Predictions. A decision-maker can improve a model’s predictions through various
pathways:

a) Data Collection Collect additional samples and increase the frequency of data collection.
Social prediction systems are often vulnerable to distribution shifts over time in dynamic
and evolving environments [Fischer-Abaigar et al., 2024, Aiken et al., 2023].

b) Data Quality Improve data quality (i.e., reduce errors and missing data) by means such
as standardizing data collection processes, implementing centralized data management
systems, and offering targeted training programs for staff.
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c) Collect Additional Features In government, this may involve integrating separate data
sources across institutions [Sun and Medaglia, 2019, Wirtz et al., 2019].

d) Advanced Modeling Techniques Utilize more sophisticated modeling techniques, which
might capture more complex patterns in the data but are often more costly to operational-
ize.

In resource-constrained settings, planners often focus on incremental improvements rather
than rebuilding entire systems. For instance, collecting a small amount of additional data may
boost R2 by a few points, uniformly reducing errors. To simulate such minor gains, we scale the
model’s residuals Ŷ+ = Ŷ + δ(Y − Ŷ ), choosing δ ∈ (0,1) so that R2 increases by a target ∆R2 (see
Appendix B.3). This preserves the overall error structure, allowing us to gauge how a “similar
but slightly better” model affects policy outcomes.

This approach can be extended in several ways. For example, residuals could be adjusted
for specific subgroups to account for uneven prediction improvements (e.g., targeted data
collection for rural or underrepresented populations). Alternatively, planners could retrain
models under different conditions—such as sample size, feature set, or architecture—and
compare the resulting policy value.

5 Case Study: Identifying Long-Term Unemployment in Germany

Public employment services (PES) across the globe make use of profiling approaches to identify
jobseekers at risk of long-term unemployment to target preventative measures [Loxha and
Morgandi, 2014]. Starting from traditional rule-based approaches, many PES either test or
already deploy algorithmic profiling to identify jobseekers in need of support [Desiere et al.,
2019, Körtner and Bonoli, 2023]. While these profiling tools assist in allocating programs that
account for large shares of PES spending — making design choices critical [Kern et al., 2024]
— systematic assessments of their relative value compared to other measures for improving
jobseekers’ outcomes remain absent.
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Figure 3: Unemployment duration The red line marks the 12 month threshold used to classify a
jobseeking episode as long-term unemployment (LTU) in Germany.

We secured access to a dataset1 on German jobseekers derived from German administrative
labor market records that cover a large portion of the German labor force. It covers a period

1For a more in-depth description of how the Sample of Integrated Employment Biographies is constructed we refer
to the official documentation provided by the IAB [Antoni et al., 2019b].
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from 1975 to 2017 and merges multiple administrative data sources, containing a wide spectrum
of individual labor market information — including records on employment histories, received
benefits, unemployment periods, participation in job training programs and demographic
information. Such administrative records are the primary data source used by PES to build
algorithmic profiling models [Bach et al., 2023].

Experimental Setup. We train a model to predict how long a newly registered jobseeker
remains unemployed, defining the target Y as unemployment duration in days (capped at
24 months)2. Following Bach et al. [2023], we use a set of covariates capturing demographic
information, labor market history, and most recent job details. We focus on unemployment
spells beginning between 2010 and 2015, resulting in data on 274,515 different jobseekers and
553,980 unemployment spells (see Figure 4).

To avoid the impact of significant labor market reforms in Germany and to ensure full obser-
vation of unemployment durations up to 24 months, we restrict our analysis to unemployment
episodes that began between 2010 and 2015. We use records from 2010 and 2011 to build the
training dataset, records from 2012 for validation, and evaluate test performance on data from
2015 (see Figure 4). We left a gap between the training and test data periods to allow enough
time for the outcomes in the training data to have been fully observed at test time, in order to
mimic a realistic deployment scenario starting at the beginning of 2015. We refer to Appendix
B.1 for additional information on the experimental setup and data.

2010 2011 2012 2013 2014 2015 2016 2017 2018

Training

Validation

Test

Figure 4: Stacked timeline diagram illustrating training (2010–2013), validation (2012–2014), and test
(2015–2017) data periods. Red dashed boundaries within each colored box indicate the possible start
dates of unemployment episodes, while the full colored boxes represent the entire observation phases for
each dataset.

Guiding Questions Our focus is the β-fraction of jobseekers with the longest expected unem-
ployment durations, representing those most at risk. In Germany, being unemployed for over
one year (about 15% of cases in our data; see Figure 3) meets the legal definition of long-term
unemployment [Bach et al., 2023], but some countries adopt different cutoffs [Desiere et al.,
2019]. Taking the perspective of a social planner designing a profiling system in a public
employment office, our analysis aims to answer the following questions:

2Note that, unlike the theoretical investigation where Y represented a positive welfare outcome (e.g., income),
here a larger Y corresponds to a worse outcome (longer unemployment).
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– How much does the screening capacity3 need to increase to ensure a significant portion of
the high-risk jobseekers are screened, given the inaccuracies in the prediction system?

– What is the real-world impact of improving screening capacity versus prediction errors?

– When do small improvements in prediction error have the largest impact?

– What are the relative benefits and trade-offs of using a simpler vs more complex prediction
model?

5.1 Results

We train a CatBoost model (see Appendix B.2 for details), achieving an R2 of 0.15 on the test set.
This level of predictive power aligns well with what is typically observed in social prediction
tasks [Salganik et al., 2020] and similar applied settings [Desiere et al., 2019].

How much does the screening capacity need to increase to target a significant fraction of
high-risk jobseekers? As expected, larger screening capacities increase both the policy value
and the number of high-risk jobseekers screened (see Figure 5). Focusing on the (German) LTU
cutoff (β ≈ 0.15), our policy value aligns well with findings of previous studies4 [Bach et al.,
2023].
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Figure 5: Policy value across different screening capacities (α) and worst-off fractions β evaluated on the
test set using the CatBoost regression model. A β value of 0.15 corresponds to the 12-month cutoff used
to define long-term unemployment in Germany.

A planner might begin by setting α = β, ensuring that, in theory, enough capacity is provided
to screen and support every high-risk jobseeker. A natural question then arises: how much
additional capacity ∆α would be required to screen at least a specified percentage of high-risk
individuals? This additional capacity represents the overhead that must be invested to account
for imperfect predictions. We observe that the ∆α required to ensure at least 75% of high-risk
jobseekers are screened remains consistently around 0.25 across different β values. While the
policy value increases as α = β rises, the marginal improvements gained from increasing access
decrease for higher α, resulting in a somewhat stable ∆α across β. In practice, this means we
need to screen 25% more of the population to ensure adequate coverage.

3In cases where multiple individuals have the exact same (predicted) unemployment duration at the threshold,
ties are randomly broken, such that only a α proportion of the population are screened.

4For the percentage of correctly identified LTU episodes, they report values of 0.29 at α ≈ 0.1 and 0.58 at α ≈ 0.25,
compared to our observed values of 0.28 and 0.56, respectively.
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(a) Constant Prediction (R2 = 0)
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(b) Trained Model (R2 = 0.15)
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(c) Near-Perfect Prediction (R2 = 0.9)

Figure 6: Prediction-Access Ratio for ∆R2 = ∆α = 0.1 across three regimes. As expected from our
theoretical intuition, the PAR is large for small α and for the trained model (b), which represents the
typical regime for allocation systems.

What is the impact of improving screening capacity versus prediction errors? We simulate
small improvements in the R2 value by uniformly scaling the residuals by a multiplicative factor.
To ensure that this approach approximates a realistic pathway of (marginally) improving the
model, we train various models at different sample sizes. We then verify that as R2 increases
with the amount of training data, the variance of the residuals decreases, while the distribution
remains largely unchanged in shape (see Figure 13). We then evaluate the prediction-access
ratio for ∆R2 = ∆α = 0.1 in three scenarios : (1) the trained CatBoost model with R2 = 0.15,
(2) near-perfect predictions with R2 = 1−∆R2 and (3) constant predictions (R2 = 0), effectively
randomizing screening decisions.

We observe a rise in the PAR for small screening capacities α (see Figure 6), consistent with
Theorem 3.1. Under random allocation (R2 =0), the PAR stays below one for α ⩾ 0.1. This result
aligns somewhat with Theorem 3.2, where we found that the (local) PAR approaches zero as
R2→ 0. Because we consider ∆ = 0.1 (rather than an infinitesimal improvement, see Figure 14
for ∆ = 0.01), the PAR remains large at small α. For the CatBoost model (R2 =0.15), capacity
improvements stay relatively more effective (i.e., PAR >1) for larger α, matching Proposition 3,
where we found that for moderate R2 and α ⩽ β, the local PAR remains above one. Meanwhile,
near-perfect predictions (R2 = 0.9) make capacity investments highly efficient, causing the PAR
to diverge for α < β, then drop sharply near α = β because the allocation becomes nearly optimal.
When α ⩾ β, the PAR stabilizes at one as numerator and denominator both approach zero.

These observations broadly match our theoretical findings, despite the non-local improve-
ments and more complex residual structure. Notably, the theory’s focus on local improvements
offers a conservative perspective on capacity investments: even under random allocation (R2 = 0),

13



securing a modest screening capacity (5−10%) is often the first priority, while at very high
R2, gains in policy value diminish so rapidly once α ⩾ β that the relative advantage of further
prediction investments becomes negligible.

When do small improvements in prediction error have the largest impact? From theory
(Theorem 3.2), we expect local policy value improvements from better predictions to diverge as
R2→ 0 and R2→ 1 when α = β. This aligns with our results in Figure 7: for small ∆R2 , the rate
of local improvements in V (R2) with respect to R2 diverges. The location of the maximum in α
also follows from the theory: as R2→ 1, the rate only diverges for α = β, while for small R2 the
maximum is at α ≈ 0.5.
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Figure 7: The rate of local improvements in V (R2) with respect to small changes in R2. In both regimes,
the local improvements diverge as ∆R2 approaches zero. Note that these are on a logarithmic scale.

What are the relative benefits and trade-offs of using a simpler vs more complex prediction
model? We compare a shallow 4-depth decision tree with the CatBoost model. As expected,
the simpler tree shows a small drop in predictive power (5% decrease in R2) which translates
into a 1–8% reduction in policy value (see Figure 8(a)). Compared to a uniform 5% increase
in R2 achieved by scaling the residuals (see Figure 15), the differences in policy value are only
partially similar across α. The CatBoost model does not provide a uniform improvement over
the decision tree; for instance, it performs better at distinguishing longer unemployment spells.

Despite this performance gap, the simpler model offers potential advantages: it fits on a
single sheet of paper, demands minimal computational infrastructure, can be easily explained
to frontline case workers and resembles the categorical prioritization rules common in public
institutions. [Johnson and Zhang, 2022]. Because more complex models incur higher costs, a
planner might instead increase screening capacity. Formally, we define

∆∗α = inf
∆α∈(0,1−β)

{
∆α : VTREE(α+∆α ,β)−VTREE(α,β)

VCAT(α,β)−VTREE(α,β) ⩾ 1
}

the smallest ∆∗α that matches the policy-value gains of the CatBoost model. Empirically, ∆∗α
mostly rises with α (see Figure 8(b)), consistent with our finding that the PAR decreases with
α. By framing the difference between models in terms of additional screenings, planners can
directly compare the cost of increased capacity to that of deploying a more complex model.
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Figure 8: (a) The difference in policy value between a 4-depth decision tree and CatBoost model. (b) The
minimum additional screening capacity that would need to be invested for the decision tree to achieve a
policy value comparable to that of the CatBoost model.

Acknowledgements

This work is supported by the DAAD programme Konrad Zuse Schools of Excellence in Arti-
ficial Intelligence, sponsored by the Federal Ministry of Education and Research and by the
Volkswagen Foundation, grant “Consequences of Artificial Intelligence for Urban Societies
(CAIUS)”.

References

E. Aiken, T. Ohlenburg, and J. Blumenstock. Moving targets: When does a poverty prediction
model need to be updated? In Proceedings of the 6th ACM SIGCAS/SIGCHI Conference
on Computing and Sustainable Societies, COMPASS ’23, page 117, New York, NY, USA, 2023.
Association for Computing Machinery. ISBN 9798400701498. doi: 10.1145/3588001.3609369.
URL https://doi.org/10.1145/3588001.3609369.

M. Antoni, A. Ganzer, and P. vom Berge. Factually anonymous version of the Sample of
Integrated Labour Market Biographies (SIAB-Regionalfile) – Version 7517 v1. Research Data
Centre of the Federal Employment Agency (BA) at the Institute for Employment Research
(IAB), 2019a. 10.5164/IAB.SIAB-R7517.de.en.v1.

M. Antoni, A. Ganzer, and P. vom Berge. Sample of Integrated Labour Market Biographies
Regional File (SIAB-R) 1975 - 2027. FDZ-Datenreport 04/2019 (en), Research Data Centre
of the Federal Employment Agency (BA) at the Institute for Employment Research (IAB),
Nürnberg, 2019b. 10.5164/IAB.FDZD.1904.en.v1.

S. Athey and S. Wager. Policy Learning with Observational Data. Econometrica, 89(1):133–161,
2021.

R. L. Bach, C. Kern, H. Mautner, and F. Kreuter. The impact of modeling decisions in statistical
profiling. Data & Policy, 5:e32, 2023. doi: 10.1017/dap.2023.29.

J. E. Blumenstock. Fighting Poverty with Data. Science, 2016.

15

https://doi.org/10.1145/3588001.3609369


N. Boehmer, Y. Nair, S. Shah, L. Janson, A. Taneja, and M. Tambe. Evaluating the Effectiveness
of Index-Based Treatment Allocation. arXiv preprint arXiv:2402.11771, 2024.

C. W. Chan, V. F. Farias, N. Bambos, and G. J. Escobar. Optimizing Intensive Care Unit
Discharge Decisions with Patient Readmissions. Operations Research, 60(6):1323–1341, 2012.
doi: 10.1287/opre.1120.1105. URL https://doi.org/10.1287/opre.1120.1105.

A. Chouldechova, D. Benavides-Prado, O. Fialko, and R. Vaithianathan. A case study of
algorithm-assisted decision making in child maltreatment hotline screening decisions. In
Conference on Fairness, Accountability and Transparency, pages 134–148. PMLR, 2018.

F. Clementi and M. Gallegati. Pareto’s law of income distribution: Evidence for Germany, the
United Kingdom, and the United States. Econophysics of wealth distributions: Econophys-Kolkata
I, pages 3–14, 2005.

A. Coston, A. Kawakami, H. Zhu, K. Holstein, and H. Heidari. A Validity Perspective on
Evaluating the Justified Use of Data-driven Decision-making Algorithms. In 2023 IEEE
Conference on Secure and Trustworthy Machine Learning (SaTML), pages 690–704, 2023. doi:
10.1109/SaTML54575.2023.00050.

S. Desiere and L. Struyven. Using Artificial Intelligence to classify Jobseekers: The Accuracy-
Equity Trade-off. Journal of Social Policy, 50(2):367–385, Apr. 2021. ISSN 0047-2794, 1469-
7823. doi: 10.1017/S0047279420000203.

S. Desiere, K. Langenbucher, and L. Struyven. Statistical Profiling in Public Employment
Services: An International Comparison. Technical Report 224, OECD Publishing, 2019. URL
https://doi.org/10.1787/b5e5f16e-en.

Z. Drezner and G. O. Wesolowsky. On the Computation of the Bivariate Normal Integral. Journal
of Statistical Computation and Simulation, 1990.

A. N. Elmachtoub and P. Grigas. Smart “predict, then optimize”. Management Science, 68(1):
9–26, 2022.

C. Fernández-Loría and F. Provost. Causal Decision Making and Causal Effect Estimation Are
Not the Same. . . and Why It Matters. INFORMS Journal on Data Science, 1(1):4–16, 2022. doi:
10.1287/ijds.2021.0006. URL https://doi.org/10.1287/ijds.2021.0006.

U. Fischer-Abaigar, C. Kern, N. Barda, and F. Kreuter. Bridging the Gap: Towards an Expanded
Toolkit for Ai-driven Decision-making in the Public Sector. Government Information Quarterly,
41(4):101976, 2024. ISSN 0740-624X. doi: https://doi.org/10.1016/j.giq.2024.101976. URL
https://www.sciencedirect.com/science/article/pii/S0740624X24000686.

L. Guerdan, A. Coston, K. Holstein, and Z. S. Wu. Counterfactual Prediction Under Outcome
Measurement Error. In Proceedings of the 2023 ACM Conference on Fairness, Accountability,
and Transparency, FAccT ’23, page 1584–1598, New York, NY, USA, 2023. Association for
Computing Machinery. ISBN 9798400701924. doi: 10.1145/3593013.3594101. URL https:

//doi.org/10.1145/3593013.3594101.

S. Jain, K. Creel, and A. C. Wilson. Position: Scarce Resource Allocations That Rely On Machine
Learning Should Be Randomized. In Forty-first International Conference on Machine Learning,
2024. URL https://openreview.net/forum?id=44qxX6Ty6F.

16

https://doi.org/10.1287/opre.1120.1105
https://doi.org/10.1787/b5e5f16e-en
https://doi.org/10.1287/ijds.2021.0006
https://www.sciencedirect.com/science/article/pii/S0740624X24000686
https://doi.org/10.1145/3593013.3594101
https://doi.org/10.1145/3593013.3594101
https://openreview.net/forum?id=44qxX6Ty6F


R. A. Johnson and S. Zhang. What is the Bureaucratic Counterfactual? Categorical versus
Algorithmic Prioritization in U.S. Social Policy. In Proceedings of the 2022 ACM Conference on
Fairness, Accountability, and Transparency, FAccT ’22, page 1671–1682, New York, NY, USA,
2022. Association for Computing Machinery. ISBN 9781450393522. doi: 10.1145/3531146.
3533223. URL https://doi.org/10.1145/3531146.3533223.

N. Kallus. More Efficient Policy Learning via Optimal Retargeting. Journal of the American
Statistical Association, 116(534):646–658, 2021. doi: 10.1080/01621459.2020.1788948. URL
https://doi.org/10.1080/01621459.2020.1788948.

C. Kern, R. Bach, H. Mautner, and F. Kreuter. When Small Decisions Have Big Impact: Fairness
Implications of Algorithmic Profiling Schemes. ACM Journal on Responsible Computing, 1(4),
Nov. 2024. doi: 10.1145/3689485. URL https://doi.org/10.1145/3689485.

T. Kitagawa and A. Tetenov. Who Should Be Treated? Empirical Welfare Maximization Methods
for Treatment Choice. Econometrica, 86(2):591–616, 2018. doi: https://doi.org/10.3982/
ECTA13288. URL https://onlinelibrary.wiley.com/doi/abs/10.3982/ECTA13288.

J. Kleinberg, J. Ludwig, S. Mullainathan, and Z. Obermeyer. Prediction Policy Problems.
American Economic Review, 105(5):491–495, 2015.

J. Körtner and G. Bonoli. Predictive Algorithms in the Delivery of Public Employment Services.
In Handbook of Labour Market Policy in Advanced Democracies, pages 387–398. Edward Elgar
Publishing, 2023.

A. Loxha and M. Morgandi. Profiling the unemployed: a review of OECD experiences and
implications for emerging economics. Social protection discussion papers and notes, (91051),
2014.

C. F. Manski. Statistical Treatment Rules for Heterogeneous Populations. Econometrica, 72
(4):1221–1246, 2004. doi: https://doi.org/10.1111/j.1468-0262.2004.00530.x. URL https:

//onlinelibrary.wiley.com/doi/abs/10.1111/j.1468-0262.2004.00530.x.

J. C. Perdomo. The Relative Value of Prediction in Algorithmic Decision Making. In International
Conference on Machine Learning, 2024.

J. C. Perdomo, T. Britton, M. Hardt, and R. Abebe. Difficult Lessons on Social Prediction from
Wisconsin Public Schools. arXiv preprint arXiv:2304.06205, 2023.

E. Potash, J. Brew, A. Loewi, S. Majumdar, A. Reece, J. Walsh, E. Rozier, E. Jorgenson, R. Mansour,
and R. Ghani. Predictive Modeling for Public Health: Preventing Childhood Lead Poisoning.
In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, KDD ’15, page 2039–2047, New York, NY, USA, 2015. Association for
Computing Machinery. ISBN 9781450336642. doi: 10.1145/2783258.2788629. URL https:

//doi.org/10.1145/2783258.2788629.

M. J. Salganik, I. Lundberg, A. T. Kindel, C. E. Ahearn, K. Al-Ghoneim, A. Almaatouq, D. M.
Altschul, J. E. Brand, N. B. Carnegie, R. J. Compton, D. Datta, T. Davidson, A. Filippova,
C. Gilroy, B. J. Goode, E. Jahani, R. Kashyap, A. Kirchner, S. McKay, A. C. Morgan, A. Pentland,
K. Polimis, L. Raes, D. E. Rigobon, C. V. Roberts, D. M. Stanescu, Y. Suhara, A. Usmani, E. H.
Wang, M. Adem, A. Alhajri, B. AlShebli, R. Amin, R. B. Amos, L. P. Argyle, L. Baer-Bositis,

17

https://doi.org/10.1145/3531146.3533223
https://doi.org/10.1080/01621459.2020.1788948
https://doi.org/10.1145/3689485
https://onlinelibrary.wiley.com/doi/abs/10.3982/ECTA13288
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1468-0262.2004.00530.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1468-0262.2004.00530.x
https://doi.org/10.1145/2783258.2788629
https://doi.org/10.1145/2783258.2788629


M. Büchi, B.-R. Chung, W. Eggert, G. Faletto, Z. Fan, J. Freese, T. Gadgil, J. Gagné, Y. Gao,
A. Halpern-Manners, S. P. Hashim, S. Hausen, G. He, K. Higuera, B. Hogan, I. M. Horwitz,
L. M. Hummel, N. Jain, K. Jin, D. Jurgens, P. Kaminski, A. Karapetyan, E. H. Kim, B. Leizman,
N. Liu, M. Möser, A. E. Mack, M. Mahajan, N. Mandell, H. Marahrens, D. Mercado-Garcia,
V. Mocz, K. Mueller-Gastell, A. Musse, Q. Niu, W. Nowak, H. Omidvar, A. Or, K. Ouyang,
K. M. Pinto, E. Porter, K. E. Porter, C. Qian, T. Rauf, A. Sargsyan, T. Schaffner, L. Schnabel,
B. Schonfeld, B. Sender, J. D. Tang, E. Tsurkov, A. van Loon, O. Varol, X. Wang, Z. Wang,
J. Wang, F. Wang, S. Weissman, K. Whitaker, M. K. Wolters, W. L. Woon, J. Wu, C. Wu,
K. Yang, J. Yin, B. Zhao, C. Zhu, J. Brooks-Gunn, B. E. Engelhardt, M. Hardt, D. Knox, K. Levy,
A. Narayanan, B. M. Stewart, D. J. Watts, and S. McLanahan. Measuring the Predictability of
Life Outcomes with a Scientific Mass Collaboration. Proceedings of the National Academy of
Sciences, 117(15):8398–8403, 2020. doi: 10.1073/pnas.1915006117. URL https://www.pnas.

org/doi/abs/10.1073/pnas.1915006117.

A. Shirali, R. Abebe, and M. Hardt. Allocation Requires Prediction Only if Inequality Is Low.
In Forty-first International Conference on Machine Learning, ICML 2024, Vienna, Austria, July
21-27, 2024. OpenReview.net, 2024. URL https://openreview.net/forum?id=WUicA0hOF9.

T. Q. Sun and R. Medaglia. Mapping the challenges of Artificial Intelligence in the public sector:
Evidence from public healthcare. Government Information Quarterly, 36(2):368–383, 2019.

A. Wang, S. Kapoor, S. Barocas, and A. Narayanan. Against Predictive Optimization: On
the Legitimacy of Decision-making Algorithms That Optimize Predictive Accuracy. ACM
J. Responsib. Comput., 1(1), Mar. 2024. doi: 10.1145/3636509. URL https://doi.org/10.

1145/3636509.

B. Wilder and P. Welle. Learning treatment effects while treating those in need. arXiv preprint
arXiv:2407.07596, 2024.

B. W. Wirtz, J. C. Weyerer, and C. Geyer. Artificial Intelligence and the Public Sec-
tor—Applications and Challenges. International Journal of Public Administration, 42(7):596–
615, 2019.

A Theoretical Investigation

β = 0.2

0.0

0.1

0.2

0.3

0.4

0.5

0 2 4 6 8
Y

D
en

si
ty

(a) Normal Welfare Distribution

Figure 9: Normal welfare distribution, with vertical lines marking the quantile cutoff (β = 0.2). The
shaded region to the left of the vertical line represents the worst-off segment of the population.
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Figure 10: Numerical Simulation of the Prediction-Access Ratio (PAR), Equation 3, for ∆R2 = ∆α = 0.01
and β = 0.05. Each point represents a screening capacity α (x-axis) and R2 value (y-axis), with the color
bar showing the PAR clipped to the range [0.5,2.0]. The vertical black line marks β, indicating the
threshold above which sufficient resources are available to screen everyone under perfect prediction.
Dotted black lines represent PAR = 1, where improvements in α and R2 are equally effective. The purple
line marks the region in the (α,R2) space where the policy value V (α,β,R2) exceeds 0.9. Values above 0.9
are located in the upper-right region beyond the purple line.

B Experiments

B.1 Experimental Setup and Labor Market Data

The dataset is provided via a Scientific Use File by the Research Data Centre (FDZ) of the
German Federal Employment Agency (BA) at the Institute for Employment Research (IAB)
[Antoni et al., 2019a,b]. It is a 2% weakly anonymized random sample of the complete German
labor market records from 1975 to 2017 and contains information on 1,827,903 individuals
across 62,340,521 observations [Antoni et al., 2019b].

We follow the same set of covariates and aggregation procedure for individual unemploy-
ment spells as described in Bach et al. [2023], incorporating demographic characteristics, labor
market histories, and information about the most recent job. This results in 56 numerical
variables and 24 categorical variables, which are one-hot encoded for model training. Fig-
ure 3 shows a histogram of individual unemployment durations, which we use as the basis
for constructing the outcome variables. The distribution is right-skewed, with a concentration
on short durations near zero and a long tail. Such a pattern is commonly observed in other
welfare-related outcomes, such as health or income metrics. We define as prediction target the
duration of the unemployment period in days Y , capped at 24 months5. Differentiating tail
values is less important for decision-making, and capping also allows training across years with
varying observation windows.

B.2 Training Details

We use CatBoost (https://catboost.ai) for model training. The model was trained for a maximum
5,000 iterations with an early stopping criterion (early_stopping_rounds = 20) based on
validation performance. Additionally, we train a shallow Decision Tree (max_depth = 4) using

5In practice, for a fixed β, the problem can also be framed as a classification task (see Appendix B.5).
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the scikit-learn package. All hyperparameters are kept at their default settings unless
otherwise specified.

B.3 Prediction Improvements

To simulate an increase in predictive power by a specified amount ∆R2 , we adjust the model’s
predictions Ŷ using the residuals Y − Ŷ . Starting with the original predictions Ŷ and true
outcomes Y , we define the adjusted predictions as

Ŷ+ = Ŷ + δ(Y − Ŷ )

We can then determine the δ corresponding to an increase of ∆R2 in the model’s R2:

δ = 1−

√
1−∆R2

∑n
i=1(Yi − Ȳ )2∑n
i=1(Yi − Ŷi)2

For a specified δ, the new residuals are

Y − Ŷ+ = (1− δ)(Y − Ŷ )

Consequently, the variance decreases by a multiplicative factor: Var(Y − Ŷ+) = (1−δ)2 Var(Y − Ŷ ).
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(a) ∆R2 = 0
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Figure 11: Residual Distribution Before and After Adjustment Figure (a) shows the residual distribution
for the original predictions (∆R2 = 0), while Figure (b) shows the residual distribution after increasing
the R2-value (∆R2 = 0.1) for the CatBoost model. The adjustment preserves the overall structure of the
residuals.
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Figure 12: The R2 value on the test set for varying training set size (CatBoost Regression).
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Figure 13: Residual distributions on the test set for models trained with varying training set sizes.

B.4 Additional Figures
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Figure 14: Prediction-Access Ratio for R2 = 0 and ∆R2 = ∆α = 0.01.
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Figure 15: V (R2 +∆R2 )−V (R2) for CatBoost model and ∆R2 = 0.05.

B.5 Binary Classification

Instead of predicting the exact duration of unemployment, the problem can be reframed as a
binary classification task. For a fixed β, we can define a binary outcome: Y = 1{Y ⩾ F−1

Y ,n(1− β)}.
This approach more directly encodes the target of interest: identifying individuals who may
require further screening or assistance. If the chosen classifier provides estimates of class
probabilities p̂(x), it can be used to formulate a decision policy 1{p̂(x) ⩾ F−1

n,p̂(1−α)}. However,
this forces us to specify β and the resulting decision threshold prior to model training. This
requirement reduces flexibility compared to a continuous prediction setup, making classification
more appropriate when the model is not intended for use in other tasks and when β remains
constant across the deployment context. Additionally, directly converting durations to labels
discards information on the precise unemployment durations that could be valuable for the
modeling process.

As can be seen in Figure 16, the resulting policy values and true positive counts remain very
similar compared to the regression case.
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Figure 16: Policy Value and True Positive Count on Test Set (Classification).
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C Additional Propositions

Proposition 4. (Optimal Policy with Gaussian Residuals) If ε = Y − Ŷ ∼N (0,γ2), then the optimal
policy π∗ : R→ {0,1} to solve the screening problem (Definition 2.1) is equal to:

π∗(Ŷi) = 1{Ŷi ⩽ F−1
Ŷ

(α)}

where F−1
Ŷ

(α) is the α-quantile of Ŷ . The value of the policy is V (π∗) = Pr[Ŷ ⩽ F−1
Ŷ

(α) | Y ⩽ F−1
Y (β)].

Proof. Since Y = Ŷ + ε where ε ∼ N (0,γ2), it follows for the conditional distribution Y | Ŷ ∼
N (Ŷ ,γ2). Since Y | Ŷ is Gaussian, we can express the conditional probability from Proposition 1
in terms of the CDF of the standard normal distribution,

Pr[Y ⩽ F−1
Y (β) | Ŷ ] = Φ

(
F−1
Y (β)− Ŷ

γ

)
To reproduce the ranking induced by Pr[Y ⩽ F−1

Y (β) | Ŷ ], individuals can be ranked in ascending
order of Ŷ . Thus, we can express the optimal policy (Proposition 1) in terms of a ranking of Ŷ ,

π∗(Ŷi) = 1{Ŷi ⩽ F−1
Ŷ

(α)}

where F−1
Ŷ

(α) is the α-quantile of Ŷ . The value V (π∗) that can by achieved by the optimal
screening policy π∗ can then be expressed as:

V (π∗) = E

[
π∗(Ŷ ) = 1 | Y ⩽ F−1

Y (β)
]

= E

[
1{Ŷ ⩽ F−1

Ŷ
(α)} | Y ⩽ F−1

Y (β)
]

= Pr[Ŷ ⩽ F−1
Ŷ

(α) | Y ⩽ F−1
Y (β)]

■

D Proofs

D.1 Optimal Policy for Screening Problem: Proof of Proposition 1

Proof. We rewrite the policy value,

E

[
π(Ŷi) = 1 | Y ⩽ F−1

Y (β)
]

=
E[π(Ŷi )1{Y⩽F−1

Y (β)}]
Pr[Y⩽F−1

Y (β)]

= 1
β E

[
π(Ŷi)E

[
1{Y ⩽ F−1

Y (β)} | Ŷi
]]

= 1
β E

[
π(Ŷi)Pr[Y ⩽ F−1

Y (β) | Ŷi]
]

To maximize the objective, individuals Ŷi with the largest scores s(Ŷi) = Pr[Y ⩽ F−1
Y (β) | Ŷi]

should be prioritized. Thus, the optimal policy is to intervene (π(Ŷi) = 1) for the top α-fraction
of the population ranked by Pr[Y ⩽ F−1

Y (β) | Ŷ ]. ■
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D.2 Optimal Policy Value in Gaussian Setting: Proof of Proposition 2

Following Proposition 4, the value of the optimal screening policy π∗ can then be expressed as:

V (π∗) = Pr[Ŷ ⩽ F−1
Ŷ

(α) | Y ⩽ F−1
Y (β)]

We can rewrite the conditional probability in terms of the joint distribution of Y and Ŷ , and
note that Pr

{
Y ⩽ F−1

Y (β)
}

= FY (F−1
Y (β)) = β,

Pr[Ŷ ⩽ F−1
Ŷ

(α) | Y ⩽ F−1
Y (β)] =

1
β

Pr[Ŷ ⩽ F−1
Ŷ

(α),Y ⩽ F−1
Y (β)]

We then standardize Y ∼N (µ,η2) and Ŷ ∼N (µ,η2−γ2) and make use that for a normal random
variable with mean µ and variance σ2 the quantile function is F−1(p) = µ+ σΦ−1 (p).

1
β

Pr[Ŷ ⩽ F−1
Ŷ

(α),Y ⩽ F−1
Y (β)] =

Pr
{
Z1 ⩽

F−1
Ŷ

(α)−µ√
η2−γ2

,Z2 ⩽
F−1
Y (β)−µ

η

}
β

=
Pr

{
Z1 ⩽ Φ−1 (α) ,Z2 ⩽ Φ−1 (β)

}
β

Z1 and Z2 are standard Gaussian with Cov(Z1,Z2) = E [Z1Z2] = 1
η
√
η2−γ2

Cov(Ŷ , Ŷ+ε) = Cov(Ŷ ,Ŷ )

η
√
η2−γ2

=
√
η2−γ2

η . Thus, they are distributed according to a standard bivariate normal distribution with

correlation ρ = Cov(Z1,Z2) =
√
η2−γ2

η . Thus,

V (π∗) = E

[
π∗(Ŷ ) = 1 | Y ⩽ F−1

Y (β)
]

=
1
β
Φ2

(
Φ−1 (α) ,Φ−1 (β) ;ρ

)
where

Φ2

(
Φ−1 (α) ,Φ−1 (β)

)
=

∫ Φ−1(α)

−∞

∫ Φ−1(β)

−∞
φ2 (z1, z2;ρ) dz1 dz2

and

φ2 (z1, z2) =
1

2π
√

1− ρ2
e−1/2(z2

1−2ρz1z2+z2
2)/(1−ρ2)

D.3 Prediction-Access Ratio for Small Screening Capacities: Proof of Theorem 3.1

Using Taylor’s theorem,

V (α,β,R2 +∆R2)−V (α,β,R2) = ∆R2
∂

∂R2V (α,β,R2 + pR2∆R2)

where pR2 ∈ (0,1). We know from Lemma D.3,

∂

∂R2V (α,β,R2
∗ ) ⩽

1

β
√

8πR2
∗ (1−R2

∗ )
φ

Φ−1 (α)−
√
R2
∗Φ
−1 (β)√

1−R2
∗
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where R2
∗ := R2 +pR2∆R2 . For α < 0.5 and β ⩽ 0.5, we know Φ−1 (α) < 0 and Φ−1 (β) ⩽ 0. It follows,

that for any ε1 > 0, 0 < R2
∗ and 0 < β, there exists a threshold value t1 > 0, such that for all α ⩽ t1,

we have

(1 + ε1)
Φ−1 (α)√

1−R2
∗
⩽

Φ−1 (α)−
√
R2
∗Φ
−1 (β)√

1−R2
∗

⩽ (1− ε1)
Φ−1 (α)√

1−R2
∗

If α < β we find Φ−1 (α)−
√
R2
∗Φ
−1 (β) < 0. Since φ(x) ⩽ φ(x′) for x ⩽ x′ < 0,

1

β
√

8πR2
∗ (1−R2

∗ )
φ

Φ−1 (α)−
√
R2
∗Φ
−1 (β)√

1−R2
∗

 ⩽ 1

β
√

8πR2
∗ (1−R2

∗ )
φ

(1− ε1)
Φ−1 (α)√

1−R2
∗


=

1

β
√

8πR2
∗ (1−R2

∗ )
φ
(
κΦ−1 (α)

)
=

1

β
√

8πR2
∗ (1−R2

∗ )
φ
(
κΦ−1 (1−α)

)
where κ := (1−ε1)√

1−R2
∗
. For any ε2 > 0, there exists a threshold t2 > 0, such that for all α ⩽ t2, we can

apply Lemma B.5. from Perdomo [2024] to arrive at the following inequality:

φ
(
κΦ−1 (1−α)

)
⩽

1
√

2π

(
(1 + ε2)

√
2παΦ−1 (1−α)

)κ2

Thus,

V (α,β,R2 +∆R2)−V (α,β,R2) ⩽ ∆R2
1

β4π
√
R2
∗ (1−R2

∗ )

(
(1 + ε2)

√
2παΦ−1 (1−α)

)κ2

We can use Taylor’s theorem again and from Lemma D.1 we know that

V (α +∆α ,β,R
2)−V (α,β,R2) = ∆α

∂
∂α

V (α + pα∆α ,β,R
2)

= ∆α
1
β
Φ

Φ−1 (β)−
√
R2Φ−1 (α + pα∆α)
√

1−R2


where pα ∈ (0,1). Since 0 < β and 0 < R2 there will always be a small enough α +∆α such that

Φ−1 (β)−
√
R2Φ−1 (α + pα∆α) ⩾ 0

Since Φ (x) ⩾ 1/2 for x ⩾ 0, it follows

∆α

2β
⩽ V (α +∆α ,β,R

2)−V (α,β,R2)

It follows for the prediction-access ratio,

∆α

∆R2
2π

√
R2
∗ (1−R2

∗ )
(
(1 + ε2)

√
2παΦ−1 (1−α)

)−(1−ε1)2 1
1−R2∗ ⩽

V (α +∆α ,β,R
2)−V (α,β,R2)

V (α,β,R2 +∆R2)−V (α,β,R2)
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For small α, Φ−1 (1−α) grows asymptotically like
√

log(1/α). Consequently, the polynomial
growth of α−1/(1−R2) drives the PAR to increase rapidly as α decreases. Since 1

1−R2
∗

increases with

R2
∗ and R2 ⩽ R2

∗ , we can lower bound the PAR by inserting R2 instead of R2
∗ :

∆α

∆R2
2π

√
R2(1−R2)

(
(1 + ε2)

√
2παΦ−1 (1−α)

)−(1−ε1)2 1
1−R2 ⩽

V (α +∆α ,β,R
2)−V (α,β,R2)

V (α,β,R2 +∆R2)−V (α,β,R2)

We can simplify the lower-bound by noting that 0 < ε1 and 0 < ε2 can be made arbitrarily small
by selecting a sufficiently small threshold t for α +∆α. Specifically, ε2 < 1 holds for α ⩽ 0.05 (see
Lemma A.6 in Perdomo [2024]).

∆α

∆R2

√
R2(1−R2)

(
5.1 ·αΦ−1 (1−α)

)− 1
1−R2 +o(1)

⩽
V (α +∆α ,β,R

2)−V (α,β,R2)
V (α,β,R2 +∆R2)−V (α,β,R2)

D.4 Maximally Effective (Local) Prediction Improvements: Proof of Theorem 3.2

We know from Lemma D.2,

lim
∆→0

V (α,β,R2 +∆)−V (α,β,R2)
∆

=
∂

∂R2V (α,β,R2)

=
1

2β
√
R2

φ2

(
Φ−1 (α) ,Φ−1 (β) ;ρ

)
We insert φ2 (·) and arrive at

∂

∂R2V (α,β,R2) =
1

4πβ
√
R2(1−R2)︸               ︷︷               ︸
T1

× exp
(
− 1

2(1−R2)
(Φ−1 (α)2 +Φ−1 (β)2 − 2

√
R2Φ−1 (α)Φ−1 (β))

)
︸                                                                           ︷︷                                                                           ︸

T2

The prefactor T1 diverges as R2→ 1 or R2→ 0.
If R2 → 1, the exponential term will generally suppress the polynomial growth of the

prefactor. However for α = β, we find for the exponent

− 1
2(1−R2)

(Φ−1 (α)2 +Φ−1 (β)2 − 2
√
R2Φ−1 (α)Φ−1 (β)) = −1−

√
R2

1−R2 Φ−1 (β)2

= − 1

(1 +
√
R2)

Φ−1 (α)2

R2→1= −1
2
Φ−1 (β)2

which is finite. Therefore, ∂
∂R2V (α,β,R2) becomes unboundedly large if α = β and R2→ 1.

If R2→ 0, the prefector T1 diverges again to +∞. The exponent then simplifies to

− 1
2(1−R2)

(Φ−1 (α)2 +Φ−1 (β)2 − 2
√
R2Φ−1 (α)Φ−1 (β)) = −1

2
(Φ−1 (α)2 +Φ−1 (β)2)
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If α and β are not set arbitrarily small or large ∂
∂R2V (α,β,R2) will diverge. The local PAR

(Lemma D.1)

lim
∆→0

V (α +∆,β,R2)−V (α,β,R2)
V (α,β,R2 +∆)−V (α,β,R2)

=
∂
∂αV (α,β,R2)
∂

∂R2V (α,β,R2)

=
Φ

(
Φ−1(β)−

√
R2Φ−1(α)√

1−R2

)
1

2
√
R2
φ2 (Φ−1 (α) ,Φ−1 (β) ;ρ)

approaches zero in both regimes.

D.5 Prediction-Access Ratio for Local Improvements: Proof of Proposition 3

We know

lim
∆→0

V (α +∆,β,R2)−V (α,β,R2)
V (α,β,R2 +∆)−V (α,β,R2)

=
∂
∂αV (α,β,R2)
∂

∂R2V (α,β,R2)

Using Lemma D.1 and Lemma D.3 we find a lower bound for the PAR:

√
8πR2(1−R2)︸             ︷︷             ︸

T1

Φ

(
Φ−1(β)−

√
R2Φ−1(α)√

1−R2

)
φ
(
Φ−1(β)−

√
R2Φ−1(α)√

1−R2

)
︸                   ︷︷                   ︸

T2

⩽
V (α +∆α ,β,R

2)−V (α,β,R2)
V (α,β,R2 +∆R2)−V (α,β,R2)

We then denote z := Φ−1(β)−
√
R2Φ−1(α)√

1−R2
and T2 = Φ(z)

φ(z) . We know from Lemma D.4 that Φ(z)
φ(z) increases

with z. It follows that we need to find the smallest possible z to find a lower bound for T2.
Generally, z decreases with α and increases with β. We treat both cases separately:

1. For α ⩽ β we find Φ−1(β)(1−
√
R2)√

1−R2
⩽ z. Since 1−

√
R2√

1−R2
decreases with R2 and β ⩽ 0.5 we can lower

bound the expression by setting R2 = 0.15 and β = 0.03. Thus, −1.25 ⩽ z and 0.59 ⩽ T2.
Since 0.15 ⩽ R2 ⩽ 0.85 we can lower bound the prefactor 1.79 ⩽ T1.

2. For α ⩽ 0.5, it follows Φ−1(β)√
1−R2

⩽ z by setting Φ−1 (α = 0.5) = 0. Since 0.15 ⩽ β and 0.2 ⩽ R2 ⩽

0.5, it follows 0.52 ⩽ T2 and 2 ⩽ T1

In both cases, we can combine the lower bounds of T1 and T2 to find

1 ⩽
V (α +∆α ,β,R

2)−V (α,β,R2)
V (α,β,R2 +∆R2)−V (α,β,R2)

D.6 Technical Lemmas

Lemma D.1 (Derivative w.r.t. α).

∂
∂α

V (α,β,R2) =
1
β
Φ

Φ−1 (β)−
√
R2Φ−1 (α)

√
1−R2

 (4)
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Proof. In the Gaussian setting we find for the policy value (Proposition 2),

V (α,β,R2) =
Φ2

(
Φ−1 (α) ,Φ−1 (β) ;ρ

)
β

We first apply Leibniz integral rule,

∂
∂α

V (α,β,R2) =
∂
∂α

Φ2

(
Φ−1 (α) ,Φ−1 (β) ;ρ

)
β

=
1
β

∫ Φ−1(β)

−∞
φ2

(
z1,Φ

−1 (α) ;ρ
)

dz1
∂
∂α

Φ−1 (α)

=
1

βφ (Φ−1 (α))

∫ Φ−1(β)

−∞
φ2

(
Φ−1 (α) , z2;ρ

)
dz2

We insert the bivariate density φ2 (·) and substitute z2 − ρΦ−1 (α) = u
√

1− ρ2

1
βφ (Φ−1 (α))

∫ Φ−1(β)

−∞
φ2

(
Φ−1 (α) , z2;ρ

)
dz2

=
1

βφ (Φ−1 (α))
1

2π
√

1− ρ2

∫ Φ−1(β)

−∞
e−1/2(z2

2−2ρz2Φ
−1(α)+Φ−1(α)2)/(1−ρ2) dz2

=
1

2πβφ (Φ−1 (α))

∫ (Φ−1(β)−ρΦ−1(α))/
√

1−ρ2

−∞
e−1/2(u2(1−ρ2)+ρ2Φ−1(α)2+(1−ρ2)Φ−1(α)2)/(1−ρ2) du

=
1

2πβφ (Φ−1 (α))
e−1/2Φ−1(α)2

∫ (Φ−1(β)−ρΦ−1(α))/
√

1−ρ2

−∞
e−1/2u2

du

=
1
β
Φ

Φ−1 (β)− ρΦ−1 (α)√
1− ρ2

 =
1
β
Φ

Φ−1 (β)−
√
R2Φ−1 (α)

√
1−R2


■

Lemma D.2 (Derivative w.r.t. R2).

∂

∂R2V (α,β,R2) =
1

2β
√
R2

φ2

(
Φ−1 (α) ,Φ−1 (β)

)
(5)

where φ2 (·) is the standard bivariate density.

Proof.

∂

∂R2V (α,β,R2) =
∂

∂R2

Φ2

(
Φ−1 (α) ,Φ−1 (β) ;ρ

)
β

=
1
β

∂ρ

∂R2
∂
∂ρ

Φ2

(
Φ−1 (α) ,Φ−1 (β) ;ρ

)
=

1

2β
√
R2

∂
∂ρ

Φ2

(
Φ−1 (α) ,Φ−1 (β) ;ρ

)
=

1

2β
√
R2

φ2

(
Φ−1 (α) ,Φ−1 (β) ;ρ

)
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where φ2 (·) is the standard bivariate density. We utilized R2 = ρ2, and in the final step applied
the partial derivative of the standard bivariate cumulative distribution with respect to its
correlation ρ [Drezner and Wesolowsky, 1990]. ■

Lemma D.3 (Upper bound of R2 derivative). Let 0 ⩽
√
R2 ⩽ 1. Then,

∂

∂R2V (α,β,R2) ⩽
1

β
√

8πR2(1−R2)
φ

Φ−1 (β)−
√
R2Φ−1 (α)

√
1−R2

 (6)

∂

∂R2V (α,β,R2) ⩽
1

β
√

8πR2(1−R2)
φ

√R2Φ−1 (β)−Φ−1 (α)
√

1−R2

 (7)

Proof. We know from Lemma D.2,

∂

∂R2V (α,β,R2) =
1

2β
√
R2

φ2

(
Φ−1 (α) ,Φ−1 (β) ;ρ

)
=

1

4πβ
√
R2(1−R2)

× exp
(
− 1

2(1−R2)
(Φ−1 (α)2 +Φ−1 (β)2 − 2

√
R2Φ−1 (α)Φ−1 (β))

)
Since 0 ⩽

√
R2 ⩽ 1,

Φ−1 (α)2 +Φ−1 (β)2 − 2
√
R2Φ−1 (α)Φ−1 (β) ⩾ R2Φ−1 (α)2 +Φ−1 (β)2 − 2

√
R2Φ−1 (α)Φ−1 (β)

= (Φ−1 (β)−
√
R2Φ−1 (α))2 ⩾ 0

Similarly,

Φ−1 (α)2 +Φ−1 (β)2 − 2
√
R2Φ−1 (α)Φ−1 (β) ⩾ (

√
R2Φ−1 (β)−Φ−1 (α))2 ⩾ 0

Thus,

∂

∂R2V (α,β,R2) ⩽
1

4πβ
√
R2(1−R2)

exp
(
− 1

2(1−R2)
(Φ−1 (β)−

√
R2Φ−1 (α))2

)
=

1

β
√

8πR2(1−R2)
φ

Φ−1 (β)−
√
R2Φ−1 (α)

√
1−R2


and

∂

∂R2V (α,β,R2) ⩽
1

β
√

8πR2(1−R2)
φ

√R2Φ−1 (β)−Φ−1 (α)
√

1−R2


■

Lemma D.4. The ratio

Φ (z)
φ (z)

(8)

is increasing in z.
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Proof. We compute the derivative of the ratio Φ(z)
φ(z) ,

∂
∂z

Φ (z)
φ (z)

=
φ2(z) + zφ (z)Φ (z)

φ2(z)
= 1 + z

Φ (z)
φ (z)

For z ⩾ 0 the derivative is clearly positive. For z < 0 we start by rewriting,

1 + z
Φ (z)
φ (z)

=
z

φ (z)

(
φ (z)
z

+Φ (z)
)

Since ∂
∂z

(
φ(z)
z +Φ (z)

)
= −z

2φ(z)−φ(z)
z2 +φ (z) = −φ(z)

z2 < 0 and φ(z)
z +Φ (z)

z→−∞→ 0, it follows for z < 0

that
(
φ(z)
z +Φ (z)

)
< 0. Thus for any z,

∂
∂z

Φ (z)
φ (z)

⩾ 0

■
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