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Abstract
Ordinal data, crucial for many scientific disciplines, consists of a discrete set of labels for

which a natural ordering but no specified distance measure exists. In practice, this pecu-

liarity of ordinal data is oftentimes overlooked, with many models making the simplified

assumption that it can be interpreted as either metric or categorical. The rise of digital tech-

nologies allows the collection of ever larger data sets, facilitating the use of more powerful

and expressive machine learning architectures. This thesis proposes and evaluates a deep

probabilistic latent model for forecasting ordinal time series by integrating an ordered-logit

model into a sequential variational autoencoder framework. The model is developed in the

context of a multi-university research initiative (Living lab AI4U) with the goal to predict in-

dividuals’ emotional trajectories using time series data collected from questionnaires on their

smartphones to suggest personalized mental health interventions. The model is evaluated

using empirical data collected during a psychiatric study and benchmark data matching this

data is created to test the model’s theoretical limitations. Hierarchical parameter estimation

is implemented to deal with sparse and short time series. The findings identify future av-

enues for dealing with irregular time series, missing values and ways to integrate multimodal

sensor data from smartphones.

Zusammenfassung
Ordinale Daten, welche für viele wissenschaftliche Disziplinen von entscheidender Bedeu-

tung sind, bestehen aus einer diskreten Anzahl von Kategorien, für die eine natürliche Rei-

henfolge, aber kein spezifiziertes Abstandsmaß existiert. In der Praxis wird diese Besonder-

heit von ordinalen Daten oft übersehen, da viele Modelle vereinfachend davon ausgehen,

dass sie entweder als metrisch oder nominal interpretiert werden können. Die zunehmende

Verbreitung digitaler Technologien ermöglicht die Sammlung immer größerer Datensätze,

was die Konstruktion von immer mächtigeren Machine Learning-Architekturen ermöglicht.

In der vorliegenden Arbeit wird ein probabilistisches latentes Modell für die Vorhersage or-

dinaler Zeitreihen durch die Integration eines ordered-logit Modells in einen sequentiellen

variational autoencoder entwickelt und evaluiert. Das Modell ist im Rahmen einer universi-

tätsübergreifenden Forschungsinitiative (Living lab AI4U) entstanden, deren Ziel es ist, den

Verlauf emotionaler Zustände von Individuen vorherzusagen, um personalisierte Interven-

tionen zur Verbesserung der psychischen Gesundheit vorzuschlagen. Als Datenquelle dienen

Zeitreihen, die über Smartphone-Fragebögen im Rahmen einer psychiatrischen Studie er-

hoben wurden. Mit diesen Daten werden übereinstimmende Benchmark-Daten erstellt, um

die theoretischen Grenzen des Modells zu testen. Hierarchische Parameterschätzung wird

implementiert, um mit kurzen Zeitreihen umzugehen. Die Ergebnisse eröffnen verschiedene

Perspektiven für den zukünftigen Umgang mit unregelmäßigen Zeitreihen, fehlenden Wer-

ten und Möglichkeiten zur Integration multimodaler Sensordaten von Smartphones.
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1 Introduction

It is difficult to make predictions, especially about

the future.
— Danish proverb

Predictions of the future seem to have held a peculiar fascination for humanity since
the dawn of history. From the carefully arranged fish guts beneath the knives of the
augurs in ancient Rome to an octopus named Paul credited with correctly predicting
the outcomes of all soccer games involving the German national team in the 2010
World Cup, humans have put their faith in an astounding variety of sources to find
out what tomorrow holds in store.1

Being somewhat limited in scope, this thesis will solely concern itself with methods
involving statistics. The focus lies on quantitative methods that rely on time series
data collected in the past, without requiring specialized previous knowledge about
the inner workings of the processes in question [Kantz and Schreiber 2004; Chatfield
2013; Lim and Zohren 2021]. This necessitates the assumption that the recorded
data sufficiently captures the characteristic dynamics and the time scale of the sys-
tem, and that we can expect these patterns to continue with some regularity in the
future [Hyndman and Athanasopoulos 2018]. Although such forecasting methods
are primarily informed by the data itself, it can still be very important to integrate
knowledge from the respective application field, e.g. by choosing the most suited
model class or formalizing insight from domain experts [Kantz and Schreiber 2004;
Chatfield 2013].
In recent years, deep learning architectures, such as recurrent neural networks, have
been employed with great success for a variety of forecasting problems [Lim and
Zohren 2021], e.g. ranging from models for COVID-19 data [Ahmed et al. 2010],
prediction of weather phenomena [Liu et al. 2015], power system planning [Guo
et al. 2018] to financial time series [Sezer et al. 2020].
A common challenge encountered when constructing deep learning models for a di-
verse set of applications is how to handle the large variety of heterogeneous data
modalities that get produced in different scientific contexts [Nazábal et al. 2020;
Bommer et al. 2021; Shi et al. 2021]. Relatively little attention has so far been paid
to the problem of forecasting ordinal time series by employing deep learning models,
with most of the literature being concerned with classification and regression tasks

1For a history of human attempts to forecast the future, see the highly entertaining Minois 1998.
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on non-sequential ordinal data [Cheng et al. 2008; Gutiérrez et al. 2016; Jaskari and
Kivinen 2018; Lu et al. 2022], e.g. prediction of facial movements [Eleftheriadis et
al. 2016] or imputation of missing values [Nazábal et al. 2020].
Ordinal data consists of a finite set of labels for which a natural ordering but no spec-
ified distance measure exists [Gutiérrez et al. 2016]. Thus, ordinal data can neither
be assumed to exist on a metric interval scale nor is it truly nominal. Such data can
be encountered in many different disciplines and application settings, ranging from
assessing pain severity [Von Korff et al. 2000; Varin and Czado 2010], quality-of-
life data in clinical trials [Goldberg et al. 2004; Lee and Daniels 2007], crash injury
severity [Castro et al. 2013], corporate credit ratings [Hirk et al. 2018], ecological
momentary assessments in psychiatry [Colombo et al. 2019], air quality [Kim 2017],
anti-trafficking efforts [Wang et al. 2020] to brain computer interfacing [Yoon et al.
2011]. In general, ordinal variables tend to appear when collecting information on
the preferences and opinions of people, for instance through questionnaires or other
types of surveys, where they oftentimes take the form of so called Likert scales, e.g.
responses ranging from "strongly disagree" to "strongly agree" [Likert 1932; Johnson
and Albert 2006].
Longitudinal ordinal data has so far been primarily investigated outside of deep
learning using a variety of modeling approaches, e.g. different Markov and gen-
eralized linear type models [Böckenholt 1999; Pruscha and Göttlein 2003; Lee and
Daniels 2007; Lee and Daniels 2008], by leveraging the global odds ratio [Molen-
berghs and Lesaffre 1994; Williamson and Kim 1996], mixed autoregressive pro-
bit models [Varin and Czado 2010] or latent variable models [Todem et al. 2007;
Cagnone et al. 2009; Tran et al. 2019].
Overall, many ordinal methods are based on the assumption that an underlying con-
tinuous latent variable exists that is segmented according to some threshold parame-
ters into contiguous intervals that represent the different ordinal responses [Johnson
and Albert 2006]. In practice, ordinal data is also oftentimes modeled by making
the simplified assumption that it can be interpreted as either metric or categorical
[Gutiérrez et al. 2016]. Such an approach has the convenient advantage that already
existing powerful machine learning methods can simply be repurposed, but runs into
the problem that converting ordinal labels to numerical values is theoretically un-
principled or that by alternatively treating ordinal prediction as a classification task
the information about the ordering is lost [Gutiérrez et al. 2016; Lu et al. 2022].
In this thesis, I will build and evaluate a probabilistic latent variable model for ordinal
time series data by leveraging a piecewise-linear RNN (PLRNN), a specific class of re-
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current neural networks [Durstewitz 2017a], that will be trained through variational
inference in the sequential variational autoencoder (SVAE) framework [Kingma and
Welling 2014; Archer et al. 2015; Blei et al. 2017; Girin et al. 2021]. SVAEs extend
the widely used Variational Autoencoder (VAE) [Kingma and Welling 2014] by in-
cluding a state space model to account for the temporal dynamics. The SVAE frame-
work has the great advantage that different observation modalities can be integrated
in a straightforward way, which I will make use of by employing the proportional
odds model (also called ordered logit model), one of the first threshold regression
models specifically designed for ordinal data [McCullagh 1980].
As discussed, ordinal responses are oftentimes collected through questionnaires,
which generally makes them difficult or costly to gather in large abundance. For
instance, there are practical limitations to how often and how many participants are
willing to answer a survey [Wen et al. 2017]. The rise of digital technologies some-
what alleviates this problem, as new ways to collect large data sources for social
science research become more and more available, e.g. via smartphones, wearable
technologies or social networks [Blazquez and Domenech 2018]. Still, ordinal data
is generally much less readily available than data sets for other typical machine learn-
ing tasks, such as image classification [Dai et al. 2021]. Working with small datasets
obviously presents a challenge from a modeling perspective, especially when want-
ing to apply expressive deep learning architectures that can require millions of data
points and parameters to be successfully trained. Dealing with small and sparse data
sets is a problem that also extends to many scientific disciplines and application con-
texts, ranging from material science [Zhang and Ling 2018] to psychiatry [Cearns
et al. 2019; Koppe et al. 2021].
Here, as a first step towards solving this problem, I will implement and test a form
of hierarchical parameter estimation. This approach is inspired by transfer learning
[Pan and Yang 2010] and is an attempt to enable the model to leverage group-level
information to strengthen predictions for short individual time series. Additionally, I
will make use of the generative model capabilities to create tailored benchmark data
to better test the theoretical limitations of the model for different sample sizes, and
discuss and implement strategies to deal with irregular sampling, multimodal data
and missing values.
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1.1 Living Lab AI4U

The development of the model was carried out in the context of an interdisciplinary
state-funded research initiative (Living lab AI4U), a multi-university collaboration
exploring ways to use methods from artificial intelligence to promote mental health
among young adults [Rauschenberg et al. 2021a]. Accordingly, the empirical
investigation of this thesis is based upon data collected during a past psychiatric
study [Rauschenberg et al. 2021b].
As discussed, ordinal data plays a large role in psychiatric research, as Likert scales
are very commonly used on questionnaires collecting self-reported information
about emotional states or behavior [Likert 1932]. There is some evidence to show
that retrospective self-reporting can often lead to heavily biased results [Ben-Zeev
et al. 2009], which is why ecological momentary assessments (EMAs) emerged as an
alternative approach to evaluate the dynamics of mental health [Csikszentmihalyi
and Larson 1987; Colombo et al. 2019]. The general idea behind this assessment
method is to capture information on mood, behavior or thoughts of participants as
close as possible to the moment they occur [Myin-Germeys et al. 2018]. Repeated
and real-time measurements reduce recall bias and allow researchers to better
understand the temporal and context-specific dependencies of emotional and
behavioral symptoms [Ebner-Priemer and Trull 2009]. This is especially important,
as it has been argued that investigating the temporal dynamics of psychiatric
phenomena might be crucial for gaining a deeper understanding of mental illnesses
[Bystritsky et al. 2012; Durstewitz et al. 2021].
Traditionally, this was oftentimes realized through written self-report diaries or
questionnaires, in which participants could record their mood in a structured way
several times a day over longer time periods [Verbrugge 1980; Stone et al. 2007].
Nowadays, the data collection process can be greatly facilitated through the use
of digital technology in the context of mobile health (mHealth) [Myin-Germeys
et al. 2016; Colombo et al. 2019]. For instance, the widespread usage of mobile
devices now allows for EMAs to be administered through the use of smartphone
applications [Seppälä et al. 2019], which makes is easier to store and collect the
relevant information. Moreover, users can now be regularly reminded to respond
to an assessment through mobile notifications and the process of filling out a
questionnaire is usually quicker and more convenient than on paper [Colombo et al.
2019]. Mobile devices can also collect additional data without requiring direct
user input, e.g. through the embedded sensors of a smartphone, ranging from step
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counts, GPS tracking to general data on phone usage [Koppe et al. 2019b; Seppälä
et al. 2019].
Ecological momentary interventions (EMIs) seek to apply similar principles to the
treatment of psychiatric patients and general mental health promotion [Myin-
Germeys et al. 2016]. In the same way that EMAs assume that emotions and
behavior are best measured directly in the everyday context, EMIs seek to bring
treatment options into the daily life of participants via the use of mobile devices
[Colombo et al. 2019]. For instance, during the EMIcompass study adaptive
interventions were administered through the smartphone of participants by making
use of compassion-focused intervention techniques, such as positive imagery or
self-compassionate writing [Rauschenberg et al. 2021b].
The rapid development of mobile healthcare services in psychiatry, but also in other
medical contexts, e.g. the increasing number of electronic health records [Wang
et al. 2018; Kim and Chung 2019], allows for the collection of larger data sets
than what previously was possible [Donker et al. 2013; Durstewitz et al. 2019;
Koppe et al. 2021]. This creates a growing potential for the deployment of powerful
deep learning architectures to provide new types of treatment solutions and opens
up new avenues for understanding mental health [Durstewitz et al. 2019; Koppe
et al. 2019b]. On the other hand, while many types of mobile mental health
applications do exists, much work still needs to be done to provide them with
a solid scientific foundation [Donker et al. 2013]. Specifically in the context of
time series forecasting, RNNs have already been employed for a variety of health
applications, e.g. predicting depressed moods from self-reported histories and
sleeping logs [Suhara et al. 2017], providing forecasts on users physical activity
levels [Kim and Chung 2019], predicting self-reported emotional states [Sükei et al.
2021], forecasting stress levels [Mikelsons et al. 2017; Umematsu et al. 2019] or
sleep quality prediction [Sathyanarayana et al. 2016].

The Living lab AI4U project seeks to further explore the potential for machine
learning methods for general mental health promotion for adolescents and young
adults [Rauschenberg et al. 2021a]. More specifically, the goal is to predict an
individual’s emotional trajectories using time series data collected from their
smartphone via questionnaires and sensory data to suggest personalized digital
mental health interventions. Therefore, the focus lies not only on forecasting the
emotional dynamics of participants, but also on leveraging a machine learning
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model to provide personalized treatment interventions.2 This thesis is primarily
focused on the first component; generating accurate forecasts of the ordinal EMA
trajectories. This is arguably the key modeling challenges, as interventions can
at least in principle be easily included into the modeling framework, as will be
discussed later. Additionally, the models will be trained on ordinal trajectories
alone, leaving the empirical investigation of sensor data for future work. To do so,
the model will be evaluated on an empirical data set collected during the psychiatric
EMIcompass study [Rauschenberg et al. 2021b]. Figure 1, presents a schematic
overview for how RNNs could be used for mobile mental health treatment.

2Of course, the potential consequences, advantages and risks of using machine learning models for
real-world (mental) health applications needs to be discussed in a much more in depth way than
it is possible in the context of this thesis. Here, the primary focus lies on the methodological
development, see the following review papers for a discussion on the future of machine learning
approaches in mental health, and their potential societal and ethical ramifications [Dwyer et al.
2018; Thieme et al. 2020].

6



Int B

t t t

Int B Int CInt A

Int A Int B Int C

Figure 1: Multimodal data, collected through questionnaires and embedded smartphone
sensors, can be used to train personalized RNN models. These subject-level mod-
els can be potentially improved by information collected from an entire group of
participants, e.g. by pre-training the model or by employing a hierarchical pa-
rameter estimation. The trained model can then simulate the impact of several
different mental health interventions on the future emotional trajectories of the
participant. The model then selects the mobile intervention associated with the
best future outcome, and sends it to the participant. The participant continues to
log her emotional states, which allows the model to gain feedback on the recom-
mended choice.
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2 Theoretical Background

2.1 Fundamentals of Time Series Models

A time series is a sequence of observations made in time [Chatfield 2013]. Mod-
eling and analyzing time series data presents a unique challenge from a statistical
perspective [Durstewitz 2017b; Shumway and Stoffer 2017]. Many classical meth-
ods in statistics and machine learning depend on the common assumption that data
points are identically and independently distributed. This is obviously not given for
time series data, as observations made in close succession are usually highly de-
pendent. This temporal dependency structure opens up the possibility of building
models to forecast future values of a time series based on time points observed in
the past [Chatfield 2013]. When attempting to find a plausible model for an ob-
served time series, one usually needs to take into account some form of randomness
[Chatfield 2013; Shumway and Stoffer 2017]. For instance, this might stem from
not having observed all the key information required to describe and model the un-
derlying process or simple measurement noise.
A time series can therefore be seen as the realization of a stochastic process, which in
turn can be defined as a sequence of random variables {Xt} indexed by time points
t. An observed time series {xt}tN

t=t1
is one sample trajectory drawn from the corre-

sponding random variables at each time point. Usually, a time series is assumed to be
composed of discrete equidistant measurements tn = n�t, which is a consequence
of limitations in the collection of data and computational analysis [Shumway and
Stoffer 2017].

2.1.1 Moments of a Time Series Process

A stochastic process can be characterized by the cumulative joint distribution of all
the random variables at all relevant time points [Chatfield 2013].

P(X1  x1, . . . , XT  xT ) (2.1)

In most cases, attaining this distribution is impossible or too impractical, which leads
to using the moments of a stochastic process as a more straightforward informative
description of the process [Shumway and Stoffer 2017].

• The mean function µt can be evaluated at all time points t.
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µt = E[Xt] =
Z 1

�1
x pt(x) d x (2.2)

• The autocovariance function provides a measure of the linear dependencies
between different time points [Durstewitz 2017b].

acov(Xt , Xt+�) = E[(Xt �µt)(Xt+� �µt+�)] (2.3)

For a time difference of � = 0 the autocovariance simply reduces to the vari-
ance. The corresponding autocorrelation is calculated by dividing by the re-
spective standard deviations.

acorr(Xt , Xt+�) =
acov(Xt , Xt+�)p

acov(Xt , Xt)acov(Xt+�, Xt+�)
(2.4)

Usually, one expects the autocovariance to drop as the time difference between
data points grows. As for the classical covariance, an autocovariance of zero
only implies that time-points are not linearly related, but they still might very
well exhibit some other form of nonlinear dependency.

2.1.2 Stationarity

All the mentioned properties refer to the infinite ensemble of potential time series
realizations of the stochastic process. As discussed above, in almost all empirical
settings, exceptions being very controlled lab settings, only a single realization can
be accessed. This gives rise to the notion of stationarity [Durstewitz 2017b]. A
stochastic process is called stationary (in the strict sense), when the overall cumula-
tive distribution function is invariant in time.

P(X1  x1, . . . , XT  xT ) = P(X1+�  x1+�, . . . , XT+�  xT+�) (2.5)

It follows that the marginal distributions of all the random variables Xt are the same,
which for instance implies that mean µt and variance acov(Xt , Xt) are also constant
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in time [Shumway and Stoffer 2017]. Additionally, the dependency structure be-
tween random variables at different time points is invariant under time shift, and
therefore only depends on the time lag between them. For example, under station-
arity assumption the autocorrelation is independent of the specific time points and
only depends on the time difference.

acor r(Xt , Xt+�) = acor r(Xt+h, Xt+�+h) (2.6)

Again, it is important to realize that the probability distributions and expectations re-
fer to the entire ensemble of the stochastic process [Durstewitz 2017b]. In one sam-
ple trajectory there still might very well be variation across time, induced through an
underlying periodic process, without breaking any of the conditions of stationarity.
Oftentimes, a weaker form of stationarity is defined that only requires a constant
mean and autocovariance. This condition is easier to determine, and forms the basis
of much of linear time series analysis, where dependencies between time points are
fully captured by the autocorrelation [Shumway and Stoffer 2017], but is clearly in-
sufficient when considering more complex non-linear dynamics [Kantz and Schreiber
2004].
From a dynamical systems perspective, one might also call a time series stationary
if it was produced by a dynamical system whose parameters ✓ are constant over the
entire observed time period. [Kantz and Schreiber 2004; Durstewitz 2017b].

xt = f✓ (xt�1) + ✏t (2.7)

In any case, one rarely has knowledge about the true underlying dynamics that gen-
erated a time series, which makes it quite difficult to determine if a system is sta-
tionary from a single time series. The recorded time period might just not be long
enough to understand the general behavior; e.g. an oscillation might look like a
linear trend on a short time scale. Practically speaking, one needs to ensure that
the observed time series contains enough information, and that the dynamics show
some kind of regularity to effectively build a model of the underlying process. [Kantz
and Schreiber 2004; Durstewitz 2017b].
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2.1.3 White Noise Process

The most basic building block for a time series model is the so called white noise
process. It consists of a sequence of uncorrelated random variables ✏t ⇠ W (0,�2)
with a finite and fixed variance �2 and a mean of zero [Chatfield 2013; Durstewitz
2017b; Shumway and Stoffer 2017].

acov(✏t ,✏t+�) =

8
<
:
�2, if � = 0.

0, otherwise.
(2.8)

E[✏t] = 0, for all t (2.9)

Oftentimes, the additional assumption is made that the variables are Gaussian dis-
tributed ✏t ⇠N (0,�2).

2.1.4 Linear Time Series Models

The arguably most popular type of stochastic time series model is the linear autore-
gressive process that assumes that current values of a time series result from a linear
function of past observations combined with a white noise process ✏t ⇠ W (0,�2)
and a constant parameter c [Chatfield 2013; Durstewitz 2017b].

Xt = c +
pX

i=1

aiX t�i + ✏t (2.10)

The order parameter p of an AR(p) process corresponds to the length of the history
of observations used to determine the next value. A second description is the so
called moving average process MA(q), where the current output depends on a linear
combination of past noise terms ✏t� j.

Xt = c +
qX

j=1

bj✏t� j + ✏t (2.11)

It is oftentimes useful to combine the AR(p) process and MA(q) process into a single
model, the widely used Autoregressive Moving Average ARMA(p, q) process.
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Xt = c +
pX

i=1

aiX t�i +
qX

j=1

bj✏t� j + ✏t (2.12)

A MA(q) process can always be expressed as an infinite order AR(p) process and vice
versa [Durstewitz 2017b] . A combined representation still has benefits, for instance
expressing a process with less parameters than a pure AR(p) or MA(q) process would
have needed [Chatfield 2013].
The parameters ai of an AR(p) process can be estimated in a fairly straightforward
way, for instance by ordinary least squares or using the Yule-Walker equations. De-
termining the moving average coefficients bj is more involved and usually requires
computational optimization methods [Chatfield 2013; Durstewitz 2017b]. The or-
der q of a MA(q) process can be obtained by calculating the sample autocorrelation
function. The autocorrelation is zero for time lags larger than q, so one can check
at which time lags the empirical estimate becomes close to zero [Chatfield 2013;
Durstewitz 2017b]. A first estimate for the order p of an AR(p) process can be de-
termined through the so called partial autocorrelation function, which measures the
correlation between time points separated by a certain lag k, while desregarding the
correlation due to the dependency of the time points in between. Similar to the au-
tocorrelation for the MA(q) process, the partial autocorrelation drops to zero for a
time lag larger than p. In practice, it is oftentimes recommended to use other criteria
to identify the correct order, such as the Akaike’s Information Criterion (AIC) or the
Bayesian Information Criterion (BIC) [Chatfield 2013].
After estimating all the necessary parameters, future values can be predicted by it-
erating the process forward [Durstewitz 2017b; Shumway and Stoffer 2017]. For
instance, for an AR(p) process the best one step ahead prediction (minimizing the
mean square error) is

x̂T+1 = E[xT+1|x1, . . . , xT ] = c +
pX

i=1

ai xT+1�i (2.13)

There exist a variety of model extensions and ways to generalize the ARMA(p, q)
model. For instance, the autoregressive integrated moving average process (ARIMA)
can be used to fit non-stationary time series by calculating time differences between
consecutive observations [Chatfield 2013]. The model can also be easily expanded
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for multivariate time series, leading to the so called vector autoregressive process
[Durstewitz 2017b].

2.2 State Space Models

When constructing a time series models for complex phenomena, one can very rarely
assume that the observations made sufficiently capture and describe the dynamics
of the system [Durstewitz 2017b]. This might be due to not having measured all the
important system variables, or just not being able to directly observe them. These
unobserved, or underlying variables describe the actual process of interest from
which the observed time series xt is generated. The underlying variables zt are also
oftentimes called latent variables. From a scientific perspective, it is of great interest
to be able to access and infer the underlying dynamics to further our understanding
of the system in question [Durstewitz 2017b]. For instance, in a psychiatric context,
data produced through ecological momentary assessments might allow insights
into the actual behavioral and cognitive mechanisms of participants [Koppe et al.
2019b; Durstewitz et al. 2021].

In state space models, the latent process is assumed to be a first-order Markov chain,
meaning that the next latent state zt+1 is only dependent on the previous time step
zt [Durbin and Koopman 2012; Durstewitz 2017b; Shumway and Stoffer 2017]. In
different terms, the future state conditioned on the present latent state is indepen-
dent of past states. Thus, the transition probabilities p(zt+1|zt) fully determine the
evolution of the underlying stochastic process.

p(zt+1|z1, . . . ,zt) = p(zt+1|zt) (2.14)

It is further assumed that the measured values xt solely depend on the latent state zt

at the respective time step t. This mapping is described by the observation process
p(xt |zt) [Durstewitz 2017b].

p(xt |z1, . . . ,zt) = p(xt |zt) (2.15)
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Furthermore, observations given their corresponding latent states are independent
of each other, which implies that the temporal dependency structure is fully encoded
in the latent process [Durstewitz 2017b].

p(xt ,xt 0 |zt ,zt 0) = p(xt |zt ,zt 0)p(xt 0 |zt ,zt 0) = p(xt |zt)p(xt 0 |zt 0) (2.16)

The observations themselves can obviously still exhibit any kind of dependencies in
time, only when conditioned on the markovian latent process the independence as-
sumption holds [Durstewitz 2017b].
The latent process 2.14 and observation equation 2.15 form the so called genera-
tive model, which can be succinctly written as the joint probability distribution of
observations {xt} and latent states {zt}. Using the mentioned properties of state
space models (2.14, 2.15, 2.16) the joint probability distribution factorizes into the
transition probabilities of the latent states, the observation model and the prior dis-
tribution of z1.

p(x,z) = p(x1, . . . ,xT ,z1, . . . ,zT ) = p(z1)
TY

t=2

p(zt |zt�1)
TY

t=1

p(xt |zt) (2.17)

Oftentimes, it is convenient to use the logarithm of the joint distribution, because it
allows for the product terms to be reformulated as sums.

log p(x,z) = log p(x1, . . . ,xT ,z1, . . . ,zT ) (2.18)

= log p(z1) +
TX

t=2

log p(zt |zt�1) +
TX

t=1

log p(xt |zt) (2.19)

2.2.1 Linear State Space Models

The linear time series models presented in Section 2.1.4 can be used to formulate
a linear state space model [Durbin and Koopman 2012; Durstewitz 2017b]. Under
the assumption of Gaussian process ✏t and observation noise ⌘t , the multivariate
latent process and observation equation can be expressed as
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. . . zt�1

xt�1

zt

xt

zt+1

xt+1

. . .
p(zt |zt�1) p(zt+1|zt)

p(xt�1|zt�1) p(xt |zt) p(xt+1|zt+1)

Figure 2: A state space model is compromised of a latent first-order Markov process, and
an observation equation connecting the latent states at each time point t to the
corresponding conditionally independent observation.

zt = Azt�1 + ✏t , ✏t ⇠N (0,⌃) (2.20)

xt = Bzt +⌘t , ⌘t ⇠N (0,�), (2.21)

where the latent vectors zt = (z1t . . . zM t)T and observations xt = (x1t . . . xN t)T are
of dimension M and N , and B denotes the (N ⇥M) dimensional observation matrix.
The initial state z1 is drawn from its own distribution z1 ⇠ N (µ0,⌃0). The state
process equation corresponds to a vector autoregressive process of order one, while
the observation equation is equivalent to a linear regression problem.
The Gaussian observation noise ⌘t represents the inherent randomness when taking
measurements, e.g. precision errors of instruments [Durstewitz 2017b]. The process
noise ✏t is conceptually more difficult to grasp. Putting the question aside, if there
are truly stochastic processes in the real-world, for instance close to the quantum
level, in most cases we have to assume that the latent model can only capture an
approximation of the real-world dynamics, which can be expressed using the process
noise [Durstewitz 2017b].

2.2.2 Piecewise-Linear Recurrent Neural Networks

Linear time series models can be a very useful tool and have many benefits, such
as fairly straightforward ways to estimate parameters, being more interpretable, or
requiring little data and less computational resources to train, at least in comparison
to deep learning methods [Durstewitz 2017b; Koppe et al. 2021]. On the other
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hand, linear systems are restricted in the variety of dynamical system phenomena
they can represent [Kantz and Schreiber 2004; Durstewitz 2017b]. In many
empirical settings, one might expect the underlying dynamics to show complex and
nonlinear dependencies that can not be fully explained through linear correlations.
This creates the need for more expressive models that can deal with highly irregular,
non-linear and potentially chaotic time series data.
Recurrent neural networks (RNNs) possess, at least in theory, the ability to approx-
imate any kind of dynamical system [Funahashi and Nakamura 1993; Durstewitz
2017a], which should make them in principle powerful enough to even represent
complex cognitive or behavioral dynamics. Piecewise-linear (PL) recurrent neural
networks are a specific class of recurrent neural networks [Durstewitz 2017a; Koppe
et al. 2019a] that can be used to formulate a nonlinear state space model. A big
advantage of PLRNNs is that they allow for the analytical calculation of various
dynamical system properties, such as fixed points or cycles [Durstewitz 2017a;
Koppe et al. 2019a; Monfared and Durstewitz 2020a; Schmidt et al. 2021]. Using
an analytically tractable system allows us to regain some of the interpretative power
that is lost when moving form linear to nonlinear systems. This is of special interest
in scientific settings, where one seeks to understand the underlying mechanisms.
This is outside of the scope of this thesis, but I would still argue that it is preferable to
use a model that is potentially interpretable in the future. In psychiatric or general
health contexts it might be of large importance to make predictions and models
explainable, e.g. give some insight why a specific intervention was recommended to
a patient. Additionally, when working in low data limits, as in psychiatry or many
scientific prediction settings, one needs to gain and leverage as much knowledge as
possible about the data generating process to tailor the modeling approach to the
empirical problem at hand.

The latent process equation of a PLRNN is given by [Durstewitz 2017a; Koppe et al.
2019a]:

zt = Azt�1 +W�(zt�1) + h+ ✏t , ✏t ⇠N (0,⌃), (2.22)

where � is a rectified linear unit activation function that is applied element
wise to the latent states �(zt)i = max(0, zit), see Figure 3. The auto-regressive
connections between states correspond to the (M⇥M)-dimensional diagonal matrix
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A, while the connection weights between units are determined by the off-diagonal
(M ⇥ M)-dimensional W matrix. ✏t is a Gaussian white noise process with a
diagonal covariance matrix ⌃. h is a constant vector of bias parameters.
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�
(x

)

Rectified Linear Unit (ReLU)

Figure 3: The Rectified Linear Unit (ReLU) activation function �(x) =max(0, x).

As in the linear case, the initial latent state z1 is sampled from a Gaussian distribution
with mean µ0 and covariance matrix ⌃0.

z1 ⇠N (µ0,⌃0) (2.23)

The process equation can also be represented using the Gaussian transition proba-
bilities p(zt |zt�1).

p(zt |zt�1) =N (Azt�1 +W�(zt�1) + h,⌃) =N (µt(zt�1),⌃) (2.24)

2.2.2.1 Basis Expansion

In statistics, a basis or spline expansion is a popular tool to increase the capacity of
a linear model [Hastie et al. 2009; Durstewitz 2017b]. The vector of regressors x is
simply replaced by a set of nonlinear functions gm, which conveniently retains the
linearity in the parameters �m once the functions are known.
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f (x) =
MX

m=1

�m gm(x) (2.25)

A similar linear spline expansion can also be used to enhance the expressiveness
of a PLRNN by replacing the ReLU-term �(zt�1) with a linear combination of ReLU
functions with different thresholds hb 2 RM and basis coefficients ↵b 2 R [Brenner
et al. 2021].

�(zt�1) =
BX

b=1

↵bmax(0,zt�1 � hb) (2.26)

B is called the number of bases. This leads to the expanded latent step equation:

zt = Azt�1 +W
BX

b=1

↵bmax(0,zt�1 � hb) + h+ ✏t , ✏t ⇠N (0,⌃). (2.27)

While the original formulation of the PLRNN should be universal enough to approx-
imate any dynamics, the basis expansion is still useful as it leads to a more parsi-
monious representation of the model [Brenner et al. 2021]. This allows the model
to represent the same dynamics with a smaller latent dimension M , and overall less
dynamical parameters.

2.2.2.2 Clipped PLRNN

To ensure that the latent states do not diverge and stay bounded, a simple "clipped"
version of the PLRNN can be formulated, as presented in Brenner et al. 2021.

zt = Azt�1 +W
BX

b=1

↵b[max(0,zt�1 � hb)�max(0,zt�1)] + h+ ✏t (2.28)

To simplify notation, the additional ReLU term will be omitted in the following Sec-
tions.

18



2.2.3 Maximum Likelihood Estimation

The next step is to infer all the parameters ✓ = {A,W, {↵b,hb},h,⌃,B,�} of the gen-
erative model p✓ (x,z) that consists of a PLRNN and a simple Gaussian observation
model, from an observed time series {xt}.

zt = Azt�1 +W
BX

b=1

↵bmax(0,zt�1 � hb) + h+ ✏t , ✏t ⇠N (0,⌃) (2.29)

xt = Bzt +⌘t , ⌘t ⇠N (0,�) (2.30)

A common way to tackle this problem is to maximize the log-likelihood log p✓ (x)
with respect to the unknown parameters ✓ [Kingma and Welling 2014; Durstewitz
2017b; Kingma and Welling 2019].

✓̂ = argmax
✓

log p✓ (x) (2.31)

For a latent variable model, the marginal likelihood p✓ (x) is calculated by integrating
the generative joint likelihood p✓ (x,z) across all possible latent trajectories [Durste-
witz 2017b; Kingma and Welling 2019].

log p✓ (x) = log

Z
p✓ (x,z) dz= log

Z
p✓ (x|z)p✓ (z) dz (2.32)

This integral is impossible or too impractical to analytically compute, which makes
it difficult to directly optimize the log-likelihood, and in turn creates the need for
specialized learning algorithms [Tzikas et al. 2008; Durstewitz 2017b]. This prob-
lem is strongly related to the task of inferring the posterior distribution of the latent
states p(z|x) [Kingma and Welling 2019].

p(z|x) = p✓ (x,z)
p✓ (x)

=
p✓ (x,z)R
p✓ (x,z)dz

(2.33)

To summarize, the goal is to find point estimates of the parameters ✓ from the ob-
served time series x, while still treating the underlying latent states z as random
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variables. A step further would lead to a fully Bayesian framework, where also the
parameters ✓ are assumed to be random variables [Blei et al. 2017; Sayer 2020].

2.2.4 Evidence Lower Bound

Since the log-likelihood described in the previous section is not easily computable,
a different optimization criterium needs to be found. To do so, a proposal density
of the latent states q(z|x) can be introduced, which allows the derivation of a lower
bound of the log-likelihood [Jordan et al. 1998; Bishop 2006]. The derivation holds
for an arbitrary probability density q(z), although its meaning will be made clear
soon.

log p✓ (x) = log

Z
p✓ (x,z)

q(z|x)
q(z|x)dz= log E

q(z|x)

ï
p✓ (x,z)
q(z|x)

ò
(2.34)

The lower bound can be found by using Jensen’s inequality that holds if f is a concave
function.

f (E[x])� E[ f (x)] (2.35)

Applying Jensens’s inequality to the logarithm in equation 2.34, we arrive at:

log p✓ (x) = log E
q(z|x)

ï
p✓ (x,z)
q(z|x)

ò

� E
q(z|x)

ï
log

p✓ (x,z)
q(z|x)

ò

= E
q(z|x)
[log p✓ (x,z)]� E

q(z|x)
[log q(z|x)]

= ELBOx(✓ ) (2.36)

This approximation of the log-likelihood is called the evidence lower bound (ELBO).
The ELBO can be reformulated in terms of the Kullback-Leibler divergence, which
makes the role of the proposal density q more obvious [Bishop 2006; Blei et al.
2017].
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log p✓ (x)� � E
q(z|x)
[log q(z|x)] + E

q(z|x)
[log p✓ (z|x)] + E

q(z|x)
[log p✓ (x)]

= �K L(q(z|x) k p✓ (z|x)) + log p✓ (x)

= ELBOx(✓ ) (2.37)

The Kullback-Leibler divergence becomes zero if the proposal density is equal to
the posterior density of the latent states q(z|x) = p✓ (z|x). Therefore, the better the
agreement between q and the true posterior p✓ (z|x), the tighter the bound; if they
are equal the ELBO corresponds to the log-likelihood.
A very prominent way to then calculate the maximum likelihood estimate for a la-
tent variable model is the Expectation-Maximization (EM) algorithm [Bishop 2006;
Durstewitz 2017b]. It maximizes the log-likelihood iteratively, where every iteration
consists of a so called E and M-step. During the E-step the EM-algorithm calculates
(or approximates) the posterior probability distribution p✓ (z|x), which is equivalent
to maximizing the ELBO with regards to q(z|x) for a fixed global parameter set ✓ . In
the M-step, the previously calculated density q(z|x)⇡ p✓ (z|x) is fixed, which causes
the KL-divergence to vanish. The ELBO is then maximized with regards to the gen-
erative model parameters ✓ , leading to the log-likelihood rising at least as much
as the lower bound [Bishop 2006]. This is repeated until convergence. Therefore,
the EM algorithm can be used to maximize the likelihood through two more easily
to compute steps. For instance, for linear state space models that were discussed
in Section 2.2.1, the E-step can be calculated analytically through the Kalman-filter
recursions [Kalman 1960; Durstewitz 2017b].
It has been demonstrated that the EM-algorithm can be used to efficiently train a
PLRNN with a Gaussian observation model by combining analytical calculations with
a Newton-type iteration scheme [Durstewitz 2017a; Koppe et al. 2019a]. This ap-
proach can also be extended to non-Gaussian observation models, although more
complicated observation models, such as non exponential family distributions, might
become too difficult to handle [Bommer et al. 2021]. Additionally, it is oftentimes
computationally prohibitive to train larger datasets with the EM-algorithm [Kingma
and Welling 2019].
Alternatively, latent variable models can be trained by leveraging principles from
variational inference, more specifically in the framework of variational autoencoders
[Kingma and Welling 2014]. Variational autoencoders have the advantage that they
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allow for greater flexibility for incorporating different generative models and data
modalities. Additionally, they can be trained very efficiently for larger datasets and
high-dimensional latent spaces [Kingma and Welling 2014; Kingma and Welling
2019].

2.3 Variational Autoencoders

2.3.1 Variational Inference

A general approach to approximate a posterior distribution p(z|x) for which no
closed form solution exists, or only one that would be too computationally expen-
sive to calculate, can be found in variational methods [Blei et al. 2017; Kingma and
Welling 2019]. The central idea is to introduce an approximate posterior q�(z|x)
that is part of a family of tractable distributions q�(z|x) 2Q, which is determined by
the variational parameters �. The goal is then to choose the optimal parameters �
so that the distribution q�(z|x) is as close as possible to the true posterior p(z|x). The
family of distributions Q needs to be as flexible and expressive as possible without
making the optimization problem too difficult [Bishop 2006]. The Kullback-Leibler
divergence can be used to capture the similarity between the variational distribution
q�(z|x) and the true conditional. Thus, we can reformulate the previous inference
problem as an optimization task.

�̂ = argmin
�

K L(q�(z|x) k p(z|x)) (2.38)

Of course, the KL-divergence is not directly computable as it depends on p(x), which
basically leads us back to the start of our problem [Blei et al. 2017].

K L(q�(z|x) k p(z|x)) = E
q�(z|x)

⇥
log q�(z|x)

⇤
� E

q�(z|x)
[log p(x,z)] + log p✓ (x) (2.39)

The term log p✓ (x) does not depend on the variational parameters �, so it can be
omitted from the optimization criterium for optimizing with regards to �.
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�̂ = arg min
�

K L(q�(z|x) k p(z|x)) (2.40)

= arg min
�

E
q�(z|x)

⇥
log q�(z|x)

⇤
� E

q�(z|x)
[log p(x,z)] (2.41)

= arg max
�

ELBOx(�) (2.42)

This reveals that the newly found objective for minimizing the KL-divergence is the
ELBO that was already previously derived using Jensen’s inequality (see 2.36). In
contrast to before, the ELBO now needs to be maximized at the same time with
regards to the generative model parameters ✓ and the newly defined variational
parameters � [Kingma and Welling 2019]. By optimizing them jointly we ensure
that the quality of the generative model improves by maximizing an approximation
of the log-likelihood p✓ (x), while the KL-divergence is minimized resulting in a better
approximate posterior q�(z|x).

✓̂ , �̂ = argmax
✓ ,�

log p✓ (x)

� argmax
✓ ,�

ELBOx(✓ ,�)

= argmax
✓ ,�

E
q�(z|x)

[log p✓ (x,z)]� E
q�(z|x)

⇥
log q�(z|x)

⇤
(2.43)

With that, the central optimization criterium of the variational autoencoder is found.
The next sections will deal with how to calculate or approximate the individual ELBO
terms, and how they can be maximized using gradient descent [Kingma and Welling
2014; Kingma and Welling 2019]. In the framework of variational autoencoders,
the variational density q�(z|x) is also called encoder or recognition model, and the
conditional distribution of the observations p✓ (x|z) is referred to as decoder or ob-
servation model.

2.3.2 Gaussian Posterior Approximation

A common choice for the family of the variational density is a multivariate Gaus-
sian distribution with the mean µ�(x) 2 RT M⇥1 and the covariance matrix ⌃�(x) 2
R

T M⇥T M , where T refers to the total number of time steps and M to the number of
latent dimensions [Kingma and Welling 2019].
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q�(z|x) =N (µ�(x),⌃�(x)) (2.44)

The variational parameters� define a functional mapping between the data points x
and the parameters of the approximate posterior. The key idea is that the variational
parameters � are shared between all observations, which makes training efficient
and allows variational autoencoders to scale better for larger datasets, as the num-
ber of variational parameters is now independent from the dataset size [Gershman
and Goodman 2014; Kingma and Welling 2014; Kingma and Welling 2019]. This
approach is called amortized inference, and avoids the costly direct optimization of
the distributional parameters for each data point as employed by more traditional
variational methods, e.g. stochastic variational inference uses a mean-field approx-
imation and optimizes the variational parameters locally for each data point [Hoff-
man et al. 2013; Cremer et al. 2018; Kingma and Welling 2019]. The usage of a
shared encoder network also makes it straightforward to determine the posterior
distribution for previously unknown observations, as we can simply input them into
the encoder network without repeating the optimization. Amortized inference can
also come at a cost, as it is technically more restrictive than directly determining the
distributional parameters. This difference is also called the amortization gap [Cre-
mer et al. 2018].
Typically, for variational autoencoders the mean and covariance are determined
through deep neural networks. The specific parameterization chosen in this thesis
will be discussed in later sections.

(µ�,⌃�) = NeuralNet�(x) (2.45)

The reasonably simple choice of a multivariate normal distribution has the benefit
that it allows to analytically write down the entropy term in the ELBO (see Equation
2.43) [Ahmed and Gokhale 1989].

E
q�(z|x)

⇥
log q�(z|x)

⇤
= �T M

2
(log(2⇡) + 1)� 1

2
log |⌃�(x)| (2.46)

Thus, we can restate the ELBO as:
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ELBOx(✓ ,�) = E
q�(z|x)

[log p✓ (x,z)]� E
q�(z|x)

⇥
log q�(z|x)

⇤

= E
q�(z|x)

[log p✓ (x,z)] +
T M
2
(log(2⇡) + 1) +

1
2

log |⌃�(x)| (2.47)

2.3.3 Monte Carlo Estimates

Generally, the expectancy value of the generative model Eq�(z|x)[log p✓ (x,z)] can not
be analytically determined. However, we can use the principle of Monte Carlo inte-
gration to gain an estimate for the expected value. An approximation of an expec-
tation of a measurable function f (x) of a random variable x ⇠ p(x)

E[ f (x)] =
Z

f (x)p(x) d x (2.48)

is given by the Monte Carlo estimate,

E[ f (x)] =
Z

f (x)p(x) d x ⇡ 1
N

NX

n=1

f (xn) (2.49)

where x1, . . . , xN are independent, identically distributed observations sampled from
the probability distribution p(x) [Weinzierl 2000]. The Monte Carlo estimator is
unbiased, and converges towards the true value for N ! 1. We can utilize this
result to formulate an unbiased and consistent estimate of the ELBO.

ELBOx(✓ ,�) = E
q�(z|x)

[log p✓ (x,z)] +
T M
2
(log(2⇡) + 1) +

1
2

log |⌃�(x)|

⇡ 1
L

LX

l=1

log p✓ (x,z(l)) +
T M
2
(log(2⇡) + 1) +

1
2

log |⌃�(x)| (2.50)

The samples z(l) are obtained by repeatedly drawing from the approximative poste-
rior distribution q�(z|x) given the observed data x.
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2.3.4 Stochastic Gradient Variational Bayes

As mentioned earlier, the maximization of the ELBO with regards to the parameters
✓ and � will be performed numerically using gradient descent. To do so, we need
to compute the gradients of the ELBO with respect to ✓ and � [Kingma and Welling
2019].
The gradient with respect to the generative model parameters ✓ can be pulled into
the expectation values as the approximate posterior does not depend on ✓ . For the
same reason, the entropy term vanishes, leaving us only with:

r✓ELBOx(✓ ,�) =r✓ E
q�(z|x)

⇥
log p✓ (x,z)� log q�(z|x)

⇤

= E
q�(z|x)

[r✓ log p✓ (x,z)] (2.51)

The expectation can be approximated fairly straightforward with the Monte Carlo
estimate previously discussed (see Section 2.3.3).

r✓ELBOx(✓ ,�) = E
q�(z|x)

[r✓ log p✓ (x,z)]⇡ 1
L

LX

l=1

r✓ log p✓ (x,z(l)) (2.52)

Calculating the gradient with respect to the variational parameters � is more diffi-
cult, since the approximate posterior q�(z|x) obviously depends on the variational
parameters�. In contrast to before, we can not immediately use the Monte Carlo es-
timate of the expectation value as the term would lose its the dependency on � and
evaluate to zero r� 1

L

PL
l=1 log p✓ (x,z(l)) = 0, which makes gradient descent based

training impossible.
The gradient can first be moved into the expectation value by using the log-derivative
trick r�q�(z|x) = q�(z|x)r� log q�(z|x), which in turn allows us to compute the
Monte Carlo estimate that is also called the score-function estimator [Kleijnen and
Rubinstein 1996; Mnih and Gregor 2014].

r� E
q�(z|x)

[log p✓ (x,z)] = E
q�(z|x)

⇥
log p✓ (x,z)r� log q�(z|x)

⇤

⇡ 1
L

LX

l=1

log p✓ (x,z(l))r� log q�(z(l)|x), z(l) iid⇠ q�(z|x) (2.53)
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The estimator is unbiased, but has the severe disadvantage that it oftentimes exhibits
very high variance [Paisley et al. 2012; Kingma and Welling 2014], which makes it
impractical for learning many models. A central idea of the variational autoencoder
framework is the introduction of a different type of gradient estimator using the so
called reparameterization trick that performs better in practice [Kingma and Welling
2014].

2.3.4.1 Reparameterization Trick

As stated above, the expectancy value can not be approximated using Monte Carlo
sampling before calculating the gradient, because the expression would lose its de-
pendency on the variational parameters �. To tackle this problem, the approximate
posterior distribution q�(z|x) can be reformulated by introducing a differentiable
and invertible deterministic function parameterized by� [Kingma and Welling 2014;
Kingma and Welling 2019].

z= g�(x,✏), ✏⇠ p(✏) (2.54)

✏ is a random variable distributed according to a probability distribution p(✏) that is
independent of the variational parameters � and the observations x. Sampling from
the approximate posterior z(l) ⇠ q�(z|x) is now a two step process. First, a sam-
ple is drawn from the auxiliary noise variable ✏(l) ⇠ p(✏), which we input together
with the observations x into the deterministic transformation to generate z(l). The
mapping g�(x,✏) and the distribution p(✏) need to be chosen in such a way that
the resulting distribution stays the same. It is possible to find such a transformation
for many distributions, for instance for any location-scale family distribution, such
as Gaussian or Logistic distributions, or for distributions with a tractable inverse cu-
mulative density function, e.g. Exponential or Cauchy distributions [Kingma and
Welling 2014].
For the multivariate Gaussian approximate posterior q�(z|x) = N (µ�(x),⌃�(X)),
introduced in Section 2.3.2, such a mapping can easily be formulated. The auxil-
iary random variable ✏ is assumed to be distributed according to a standard normal
distribution,

✏⇠N (0,1) (2.55)
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which yields:

z= g�(x,✏) = µ�(x) +⌃�(x)1/2✏ (2.56)

for the deterministic function, where ⌃1/2 is the Cholesky decomposition of ⌃ . A
similar formulation can be used for all location-scale family distributions (location
+ scale ⇥✏).
Once such a function has been found, we seek to express the expectation values in
the ELBO by a change of variables z= g(✏).

E
z
[h(z)] = E

✏
[h(g(✏))] (2.57)

This follows from how probability densities can be reformulated into each other via
a strictly monotonic function g [Devore and Berk 2012].

fz(z) = f✏(g�1(z))
����det

d g�1(z)
dz

���� (2.58)

The transformation from above can then be inserted into the expectation value to
arrive at equation 2.57.

E
z
[h(z)] =

Z

z

fz(z)h(z) dz

=
Z

✏

f✏(g�1(z))
����det

dg�1(z)
dz

���� h(z)
����det

dz
d✏

���� d✏

=
Z

✏

f✏(✏)
����det

d✏
dz

���� h(g(✏))
����det

dz
d✏

���� d✏

=
Z

✏

f✏(✏)h(g(✏)) d✏= E
✏
[h(g(✏)] (2.59)

In the second line the probability distribution is transformed, and the variables of
integration are changed. Finally, by exploiting the inversion function theorem for
the Jacobian matrices, we can see that both determinants cancel each other out, and
that the equality holds true.
Equipped with this result, the expectation values in the ELBO can be rewritten. Here
we still assume a multivariate Gaussian approximate posterior, while in other cases
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where the entropy term is not analytically tractable we could reformulate the ex-
pression in similar fashion.

ELBOx(✓ ,�) = E
q�(z|x)

[log p✓ (x,z)] +
T M
2
(log(2⇡) + 1) +

1
2

log |⌃�(x)|

= E
p(✏)

⇥
log p✓ (x, g�(x,✏))

⇤
+

T M
2
(log(2⇡) + 1) +

1
2

log |⌃�(x)| (2.60)

We can now use Monte Carlo sampling to arrive at the famous Stochastic Gradient
Variational Bayes (SGVB) estimator of the ELBO [Kingma and Welling 2014].

ELBOx(✓ ,�)⇡ 1
L

LX

l=1

log p✓ (x, g�(x,✏(l))) +
T M
2
(log(2⇡) + 1) +

1
2

log |⌃�(x)|

(2.61)

As the expectation is now with respect to p(✏), and the source of randomness has
been separated from the variational parameters �, the gradient can now be simply
pulled inside the expectation. This estimator exhibits much lower variances than the
score function estimator mentioned earlier [Rezende et al. 2014].

r� E
q�(z|x)

[log p✓ (x,z)] =r� E
p(✏)

⇥
log p✓ (x, g�(x,✏))

⇤

= E
p(✏)

⇥
r� log p✓ (x, g�(x,✏))

⇤

⇡ 1
L

LX

l=1

r� log p✓ (x, g�(x,✏(l))) (2.62)

2.3.5 ELBO for Sequential Variational Autoencoders

So far, the entire formulation of the variational autoencoder framework was inde-
pendent of the fact that we are considering time series data. We will now take a
closer look at the recognition and generative model terms of the ELBO in the setting
of state space models.

2.3.5.1 Recognition Model

As discussed in Section 2.3.2, an approximate Gaussian posterior q�(z|x) =
N (µ�(x),⌃�(x)) is a common choice for the recognition model, as it allows the
analytical calculation of the entropy term and makes it fairly straightforward to per-
form the reparameterization trick. Generally, the parameters are calculated using
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neural networks, although the exact parameterization and network architecture can
vary.

(µ�,⌃�) = NeuralNet�(x) (2.63)

A general problem with a Gaussian posterior is that the number of parameters scales
quadratically in time (⌃� 2 RT M⇥T M), making training larger datasets computa-
tionally unfeasible. To counter this, we can make different simplifying assumptions
about the structure of the covariance matrix, e.g. a block-tridiagonal covariance ma-
trix [Archer et al. 2015]. We will make use of the mean field assumption [Bishop
2006], which allows us to factorize the approximate posterior across time points and
latent space.

q�(z|x) =
TY

t=1

MY

m=1

q(tm)
� (ztm|x) (2.64)

We therefore assume that the covariance matrix is completely diagonal, which
greatly decreases training time. Of course by neglecting correlations between time
points and states, it also significantly reduces the expressivity of the approximate
posterior [Blei et al. 2017]. The mean and variance at each time point is then pa-
rameterized by multiple convolutional neural network layers [Warkentin 2021]. A
CNN is used in the hopes that it might allow for the extraction of important temporal
features from the observations that can then be encoded into the latent space [Cui
et al. 2016; Zhao et al. 2017]. More specifically, a 4-layer CNN is used for com-
puting the mean µt 2 RM , and a 1-layer CNN for the log-variance log�2

t 2 RM , as
recommended in Brenner et al. 2021; Warkentin 2021.

(µ�, log�2
�) = (CNN�µ(x), CNN�⌃(x)) 2 (RT⇥M ,RT⇥M) (2.65)

For the computation of the mean or log-variance vector at a specific time step t, the
CNN considers the 2k observations before the time point {xt�2k, . . . ,xt}. In contrast
to previous implementations [Warkentin 2021], I did not position the kernel window
symmetrically around the time points to better respect the causal structure of the
time series, which also makes it more straightforward to sample an initial latent
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state for ahead prediction. For the first 2k time points a reflection padding is used.
Finally, due to the diagonal covariance structure, the entropy term in the ELBO can
be written as a simple sum across variances.

H(q�(z|x)) =
T M
2
(log(2⇡) + 1) +

1
2

TX

t=1

MX

m=1

log�2
�(x)tm (2.66)

2.3.5.2 ELBO of the PLRNN

After discussing the recognition model and the entropy term of the ELBO the last
puzzle piece missing is the likelihood of the generative model. As latent model a
PLRNN is employed, and as observation model we for now consider a multivariate
Gaussian distribution, see Section 2.2.3.

p✓ (zt |zt�1) =N (Azt�1 +W
BX

b=1

↵bmax(0,zt�1 � hb) + h,⌃)

=N (µzt
(zt�1),⌃) (2.67)

p✓ (xt |zt) =N (Bzt , � ) =N (µxt
(zt),�) (2.68)

Using the factorization of the joint log-likelihood, see equation 2.19, we can write:

log p✓ (x,z) = log p✓ (x1, . . . ,xT ,z1, . . . ,zT )

= log p✓ (z1) +
TX

t=2

log p✓ (zt |zt�1) +
TX

t=1

log p✓ (xt |zt)

=� M
2

log(2⇡)� 1
2

log|⌃0|�
1
2
(z1 �µ0)T⌃�1

0 (z1 �µ0)

+
TX

t=2

Å
�M

2
log(2⇡)� 1

2
log|⌃|� 1

2
(zt �µzt

)T⌃�1(zt �µzt
)
ã

+
TX

t=1

Å
�N

2
log(2⇡)� 1

2
log|� |� 1

2
(xt �µxt

)T��1(xt �µxt
)
ã

(2.69)

2.3.6 Training Overview

We arrive at the final optimization criterium by combining the entropy term from
equation 2.66 and the likelihood of the generative model from the section before
(see equation 2.69).
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ELBOx(✓ ,�)⇡1
L

LX

l=1

log p✓ (x, g�(x,✏(l))) +H(q�(z|x))

=
1
L

LX

l=1

Å
� M

2
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2
log|⌃0|�

1
2
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+
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Å
�M

2
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2
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+
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2
(log(2⇡) + 1) +
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2

TX

t=1

MX

m=1

log�2
�(x)tm (2.70)

The ELBO is maximized by gradient descent with regards to the generative and
recognition model parameters ✓ ,�. To do so, it is common to employ mini-batch
gradient descent [Kingma and Welling 2019], which corresponds to drawing ran-
dom subsets of the data and performing the gradient updates mini-batch-wise. The
stochasticity introduced by sampling mini-batches reduces the danger of the opti-
mization procedure getting stuck in saddle points or local minima, while at the same
time usually being more computationally efficient.
For most of the empirical investigation in this thesis, gradient updates were per-
formed over the entire time series at once. The empirical dataset that will later be
used for evaluation only contains very short time series, so it is unfeasible to split
them up without destroying much of the temporal structure. Notice that the train-
ing procedure is still stochastic, as samples z(l) need to drawn from the encoder. The
entire training procedure also has been dubbed Auto-Encoding Variational Bayes
[Kingma and Welling 2014]. As optimization method Adam from the PyTorch pack-
age is used [Kingma and Ba 2015].
Figure 4 illustrates the computation of the ELBO estimator during one training
epoch. The time series data x is used as input for the recognition model, which
calculates the mean µ�(x) and the covariance ⌃�(x) of the Gaussian approximate
posterior q�(z|x). The covariance matrix can then directly be used to determine
the entropy term H(q�(z|x)). The reparameterization trick is then exploited, and L
samples z(l) = µ�(x)+⌃�(x)

1
2✏(l) are drawn with the aid of an external random vari-

able p(✏)⇠N (0,1). Commonly, it is sufficient to draw a single sample during each
epoch [Kingma and Welling 2014]. Next, the samples z(l) are fed into the genera-
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tive model, where they are used to compute the likelihood terms of the observation
model and the PLRNN respectively. Together they determine the joint log-likelihood
of the generative model p✓ (x,z).

  !

Figure 4: Diagram illustrating the process of calculating the ELBO estimator during maxi-
mum likelihood training of the sequential variational autoencoder.

2.3.7 Multimodal VAE

The usage of smartphones and other wearable devices allows for the collection of
a large number of data modalities. In addition to providing an easy way to admin-
ister questionnaires, a variety of passive sensor data can be gathered that does not
require active participant input [Koppe et al. 2019b]. For instance, it is possible to
monitor location data, step counts, app usage, music listened to or phone calls and
SMS activity.3 Barring privacy concerns, this type of data can of course be collected

3For more examples for mobile sensing see: https://docs.movisens.com/movisensXS/mobile_sensing/

#features-library-version-version

33

https://docs.movisens.com/movisensXS/mobile_sensing/#features-library-version-version
https://docs.movisens.com/movisensXS/mobile_sensing/#features-library-version-version


much more liberally, as one does not need to worry about tiring the participant with
a high sampling frequency. In addition, it can also provide important context in-
formation on the behavior and emotional state of the subject that is not biased by
self-reporting, e.g. sleep quality has a great effect on next-day mood [Triantafillou
et al. 2019].
Bommer et al. 2021 show how the PLRNN framework can be extended to include
multiple data modalities. For each modality, a new observation model needs to be
introduced. Assuming conditional independence between the different measure-
ments, the overall observation likelihood simply factorizes into the contributions of
the different data types. For two modalities x and q we find:

p✓ (x,q|z) = p✓ (x|z)p✓ (q|z) (2.71)

Thus, the ELBO can be modified in very straightforward way by simply adding the
likelihood of each additional modality.

ELBOx(✓ ,�)⇡1
L

LX

l=1

�
log p✓ (x|z(l)) + log p✓ (q|z(l)) + log p✓ (z(l))

�
(2.72)

+H(q�(z|x,q)) (2.73)

For the recognition model all data modalities can now be used as input
for the neural networks parameterizing the approximate posterior q�(z|x) =
N (µ�(x,q),⌃�(x,q)). Adapted from Tombolini 2021, a separate CNN is defined
for each data modality. The output of all networks is then concatenated by a single
feed-forward layer to arrive at the final mean (or covariance) matrix.
As an example for a potential sensor modality, I re-implemented and optimized the
run time of the Zero-inflated Poisson (ZIP) model [Lambert 1992] inspired by code
from Tombolini 2021. The ZIP model can be used for count data that is strongly zero-
inflated. This situation might for instance occur when monitoring the step counts of
participants, where for many hours of the day, e.g. during sleep phases or while sit-
ting at the office, only zero entries are reported. The ZIP model splits up the process
that generates the zero observations from the rest of the counts. A count variable
qti at time step t and for feature i is zero with a probability of ⇡t i and Poisson-
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distributed with probability 1�⇡t i. Notice that in the second case zero counts can
still be drawn from the Poisson distribution.

p(qti|zt) =

8
<
:
⇡t i + (1�⇡t i)e��t i if qti = 0

(1�⇡t i)
�

qti
t i

qti !
e��t i if qti > 0

(2.74)

The parameters ⇡t i and �t i are determined by the latent states zt through a gener-
alized linear model with a logit and a log-link function, similar to what will be used
for the ordinal observations in Section 3.3.3.
In the context of this thesis, I was not able to perform an empirical investigation of
the multimodal setup, as the empirical dataset that I primarily worked with does
not contain such modalities. In the spirit of building up a modeling framework for
future use, I still deemed it important to integrate the multimodal aspect at least as
a simple test case.

2.4 Manifold Attractor Regularization

Many time series models have severe problems dealing with slower time scales
and sufficiently capturing long-range dependencies. To mitigate this problem for
PLRNNs, the so called manifold attractor regularization has been proposed by
Schmidt et al. 2021. The general idea is to regularize the parameter matrices A,W,h
for a subset of the latent states Mreg  M . More specifically, we seek to push parts
of the diagonal matrix A towards the identity matrix, and the off-diagonal matrix W
and the vector h to 0. This is achieved by adding the following penalty term to the
loss (or respectively subtracting it from the ELBO).

Lreg = �
MregX

m=1

(Am,m � 1)2 +�
MregX

m=1

MX

n=1,n6=m

W 2
m,n +�

MregX

m=1

h2
m (2.75)

To give a brief motivation for the expression, we can reformulate the PLRNN by
introducing a diagonal matrix Db

⌦(t) = ↵bdiag(db
⌦(t)) for each basis, where db

⌦(t) =
(d⌦(t)1, . . . , d⌦(t)M) is a vector of indicator functions such that d⌦(t)m = 1 if (z(t�1)m �
hm)> 0 and zero in the other case [Brenner et al. 2021; Monfared et al. 2021]. This
gives us the following PLRNN equation with DB

⌦(t) =
PB

b=1 Db
⌦(t):
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zt = Azt�1 +W
BX

b=1

Db
⌦(t)zt�1 + h= (A+WDB

⌦(t))zt�1 + h (2.76)

We therefore find for the Jacobian of the PLRNN:

Jt =
@ zt

@ zt�1
= (A+WDB

⌦(t)) (2.77)

We can now consider the Jacobian of two temporally distant latent states zt and
zt 0 , t � t 0 [Monfared et al. 2021].

@ zt

@ zt 0
=

t�t 0�1Y

i=0

@ zt�i

@ zt�i�1
=

t�t 0�1Y

i=0

Jt�i =
t�t 0�1Y

i=0

(A+WDB
⌦(t�i)) (2.78)

If the largest absolute eigenvalue of the Jacobians is on average (according to the

geometric mean
���
Qt�t 0�1

i=0 Jt�i

���
1/(t�t 0)

) smaller or larger than one, the gradients will
either tend to vanish or explode for (t� t 0)!1 [Monfared et al. 2021]. This would
imply that the model is unable to express long-range dependencies, which strongly
links the question of preserving memory to the behavior of the gradients.
While we could simply enforce A = I and W = 0 to ensure that the Jacobians stay
bounded, we in turn lose the expressivity of the system required to reconstruct a
wide range of dynamical behavior. This would also be excessive, as we only require
a system that can express long term dependencies, and do not need infinite memory.
Fortunately, it can be shown that by only regularizing the matrices for a subset of
the latent states, the Jacobians still stay bounded from above and below [Monfared
et al. 2021; Schmidt et al. 2021]. This hinges on the assumption that the non-
regularized latent states converge toward a stable fixed-point or k-cycle and do not
exhibit chaotic behavior, which ensures that the gradients stay bounded from above.
Conceptually speaking, the latent space is split in two, where part takes on the role of
memory states, while the non-regularized latent states allow the model to retain its
flexibility. As the regularization term does not scale with the number of time points
T , we divide the rest of the ELBO by T to ensure an equal weighting.
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2.5 Interventions in the PLRNN

As discussed in the introduction, one of the main goals for the psychiatric use case is
to use the model forecasts to recommend different ecological momentary interven-
tions to the participants. The key part is to first be able to produce sensible predic-
tions, as it is then relatively straightforward to integrate the intervention feedback
loop into the framework. This can be done by simply adding an external input term
Cst to the PLRNN equation [Koppe et al. 2019a].

zt = Azt�1 +W
BX

b=1

↵bmax(0,zt�1 � hb) + h+Cst + ✏t , ✏t ⇠N (0,⌃). (2.79)

C is a coefficient matrix, while st encodes if and what intervention was selected at
time step t, for instance by denoting the different intervention types as a simple
one-hot encoded vector. After model training, it is then possible to generate a fore-
cast of the emotional trajectories under the assumption that a specific intervention
is recommended at the current time point. All the forecasts for the different po-
tential interventions can then be compared, and the intervention that leads to the
best future development is sent to the participant. Of course a key question is, how
to compare the different forecasts. For instance, a summary statistics could be con-
structed for each predicted time series that simply averages the different Likert items
while weighing desired emotions as positive, and negative affects correspondingly
as negative. A large variety of comparison measures could be thought of, e.g. it
might be beneficial to recommend interventions that lead to more stable emotional
trajectories. In the end, this questions needs to be tackled in conjunction with mental
health specialists. It might even be interesting to allow users to select their priorities
themselves, e.g. someone might want to primarily focus on reducing how stressed
they are, while others could be interested in a different use case.
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3 Model Implementation

In the previous section, the general theoretical background of the variational autoen-
coder model was discussed, and how it can be trained using Stochastic Variational
Bayes. Next, I will discuss several extensions to the model framework that I imple-
mented that enable us to deal with a variety of common problems one faces when
working with empirical time series data. Most importantly, I will discuss how to
handle missing values, adapt the generative model for ordinal data and how to use
hierarchical parameter estimation to potentially increase the predictive strength of
individual predictions by exploiting group level information. I will showcase these
issues with an empirical dataset from a psychiatric study.
The model code is based on the general version of the SVAE code from Leonard
Bereska, a former PhD student at DurstewitzLab. Additionally, I used the CNN en-
coder implementation from Paul Warkentin [Warkentin 2021], and took inspiration
for my own implementation of the categorical observation model from Bommer et
al. 2021.

3.1 EMI Compass Data

The empirical investigation of this thesis is mainly based upon data collected during
the "EMIcompass" study [Rauschenberg et al. 2021b; Schick et al. 2021]. The study
sought to understand the potential therapeutic benefits and effects of compassion-
focused interventions through the use of EMIs administered via an application on the
smartphones of participants. The target group were young individuals that strug-
gled with psychotic, depressive or anxiety-related symptoms. In the course of the
study, participants also completed ecological momentary assessments in regular in-
tervals. The study was structured into four phases: baseline, intervention phase,
post-treatment and a four-week follow up.
I focused on the EMA data collected during the baseline, post-treatment and follow
up phase, as during these periods the sampling frequency was the highest. These
periods lasted six days each, during which participants had to respond to eight EMA
notifications per day. Participants could set the time interval themselves in which
EMA prompts could appear each day. In the set interval, e.g. 8:00 to 23:00, the
EMAs were randomly scheduled with a minimum time difference of 30 minutes.
Completing the EMA questionnaire takes around two minutes on average , and par-
ticipants had 15 minutes to respond to the notification. A participant ignoring, dis-
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missing or failing to fully complete an EMA was separately logged. Around 44 to
47 questions were asked at each time point, with most items being categorical or
ordinal in nature. I chose to focus on a subset of items that were likely the most
relevant for future studies in the "Living lab AI4U" project motivated by its stronger
focus on general public health. The items used are listed in Table 1, and measure
momentary positive and negative affects, self-esteem and self-compassion. They are
all on a 7-point Likert scale (from 1 to 7), with a rating of 1 meaning "not at all" and
a rating of 7 "very much".

Table 1: Likert-scale features from the EMIcompass study used for model training.

Feature name Scale of measure Emotion

EMA_relaxed ordinal (range 1-7) I feel relaxed.
EMA_scared ordinal (range 1-7) I feel scared.
EMA_feeldown ordinal (range 1-7) I am feeling down.
EMA_angry ordinal (range 1-7) I feel angry.
EMA_satisfied ordinal (range 1-7) I feel satisfied.
EMA_insecure ordinal (range 1-7) I feel insecure.
EMA_cheerful ordinal (range 1-7) I feel cheerful
EMA_annoyed ordinal (range 1-7) I feel annoyed.
EMA_enthusiastisch ordinal (range 1-7) I feel enthusiastic.
EMA_lonely ordinal (range 1-7) I feel lonely.
EMA_guilty ordinal (range 1-7) I feel guilty.
EMA_selfdoubt ordinal (range 1-7) I doubt myself.
EMA_disappointed ordinal (range 1-7) I feel disappointed about

myself.
EMA_likemyself ordinal (range 1-7) I like myself.
EMA_safe ordinal (range 1-7) I feel safe.
EMA_benevolent ordinal (range 1-7) I feel benevolent.

3.1.1 Discrete Time Steps

As mentioned, the EMA notifications were sent out at random (continuous) time
points during the allotted daily interval. The generative model expects discrete
equidistant time steps, which creates the challenge of finding a sensible discretiza-
tion in time.
As can be seen in Figure 5, the trigger times for EMA prompts are roughly equidistant
during the day, while the larger time differences reflect the necessity of sleep. Based
on this, I inserted empty values (filled with ’NaN’s) in between EMAs that were more
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Figure 5: The histogram shows that EMA notifications are roughly equidistant in the data
(⇠ 1.6 hours). The smaller peak between 10 and 15 hours corresponds to the
night phases.

than three hours apart. By doing so, one day is roughly partitioned into 16 time steps
that are 1.5 hours apart. I did not aggregate time steps that were closer than 1.5
hours to avoid losing any information from the already sparse data. Figure 6 shows
an example time series after preprocessing.
This straightforward approach is a reasonable choice here, but it is important to
mention that integrating features with varying time scales is a complicated challenge.
When working with multimodal data, such as sensor data and EMA questionnaires,
the sampling rates might wildly differ and a simple discretization in time might not
allow the model to capture all the temporal dependencies in the data. For instance,
step counts measured via the smart phone are obviously far more numerous than
data points that require user input. Simply aggregating more frequently sampled
data might be problematic, as it carries the danger of losing important dependencies.
There exist multiple different avenues to extend state space models for multi-rate
data [Li and Marlin 2020]. For instance, leveraging a hierarchical latent structure
has been proposed as a way to learn on differently sampled data [Che et al. 2018a].
It might also prove worthwhile to use a continuous model formulation that does not
require discrete time steps and is therefore closer to the real-world dynamics [Chen
et al. 2018; Rubanova et al. 2019; Monfared and Durstewitz 2020b].
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Figure 6: A one week EMA time series from the EMIcompass dataset depicting a subset of
Likert-scale features. One time step roughly corresponds to 1.5 hours. Missing
values were inserted to account for the night phases.
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3.2 Missing Values

The dataset is comprised out of three time series (baseline, post-treatment, follow-
up) for each of the 83 participants. Unsurprisingly, we find many missing values
in the data, either because the participants did not react to an input prompt, or
due to the time discretization described above. On average users fully completed
around 55% of EMAs with quite a bit of variation across time series, see Figure
7. I chose to exclude time series with less than 35 non-missing time steps from
further investigation, which leaves us with 156 time series that on average contain
47 non-missing time steps. It also important to highlight that there are no partially
missing time steps, meaning either no feature is missing or all are at a specific time
point. This is due to how the questionnaire is setup; it can only be sent off once the
participant responded to all items.
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(a) Number of non-missing time steps
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Figure 7: Each time series roughly covers a one-week period with eight EMA prompts per
day. The left histogram shows the number of non-missing EMAs for different time
series, while the right histogram shows the percentage of questionnaires that par-
ticipants completed.

All time series contain at least around 50% missing time steps that need to be sensibly
integrated into the model framework. If we recall the SGVB estimate of the ELBO
from the previous Chapter (see 2.70),

ELBOx(✓ ,�)⇡1
L

LX

l=1

log p✓ (x, g�(x,✏(l)) (3.1)

+
T M
2
(log(2⇡) + 1) +

1
2

log |⌃�(x)|

we can see that the observations are needed for calculating the likelihood of the
generative model and for determining the parameters of the approximate posterior.
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The likelihood of the observation model simply factorizes in time, which makes it
possible to evaluate it only on the measured values by simply restricting the sum to
the time points tobs 2 Ot = {t | xt is observed} associated with non-missing data
points [Fortuin et al. 2020; Nazábal et al. 2020].

log p✓ (xobs|z) =
X

tobs2Ot

log p✓ (xt |zt) (3.2)

3.2.1 Imputation

Without making significant changes to the model architecture, the missing values
need to be replaced before they get inputted into the encoder model. Thus, we need
to choose a suitable imputation strategy. In principle, missing values from multivari-
ate time series can be estimated either by making use of the temporal correlations in
each feature, or exploiting the correlations across different variables [Fortuin et al.
2020]. Here, the feature correlations are not of much help, as time steps are always
completely missing. This is also a general challenge in clinical research, as partic-
ipants that do not self report on one item, tend to do the same for other variables
[Pedersen et al. 2017]. A variety of imputation methods that are geared towards uni-
variate imputation exist [Moritz et al. 2015]. For instance, very simple single value
approaches can be used, such as replacing missing values by the overall temporal
mean, or forward imputing by replacing missing values by the last known measure-
ment.
I primarily relied on a weighted moving average to separately estimate the missing
values in each category, see Figure 8. The missing data points are replaced by the
weighted mean of the 2k neighboring values (k values before and after the time
point). Thus, the estimated value of the feature i at time point t can be written as:

x̃ (i)t =

Pk
j=�k w j x

(i)
t+ jPk

j=�k w j

(3.3)

The kernel weights wj are chosen from a Gaussian distribution (� = 4) centered
around t, which leads to temporally adjacent measurements contributing more to
the average. If many values are missing close to the time point, observations further
away become more important. The window size k is set to 40; its size does not
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matter much, as long as it is big enough, since far away values are automatically
suppressed by the Gaussian weighting.

t

t

ta)

b)

c)

Figure 8: The missing observations are imputed through a weighted moving average of
neighboring measurements with the weighting factors decreasing according to a
Gaussian distribution.

As an alternative, I also explored an imputation strategy that makes direct use of
the generative model. The general idea is quite intuitive, as we are already training
a probabilistic model that should at least in theory be capable of generating new
observations. More specifically, I draw an initial latent state at all non-missing time
steps that are followed by a missing one. From these initial states, the PLRNN can
be propagated forward until the next observed value. The resulting latent states
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can then be used as input for the observation model, which allows us to generate
replacement values at the missing time steps. The newly estimated observations to-
gether with the original measured values can then be used as input for the encoder
to find the parameters of the approximate posterior, which in turn makes it possible
to sample latent states and calculate the entropy term.
In theory, this method should be suited for finding reasonable estimates for the miss-
ing data. In fact, latent variable methods have oftentimes been specifically used for
data imputation tasks [Che et al. 2018a; Fortuin et al. 2020]. A difficulty arising with
the CNN encoder design is that the sampling of the initial latent states is not possible
if too many values are missing. Since the CNN encoder always takes into account
neighboring observations {xt�2k, . . . ,xt} to generate a sample zt , we run into a prob-
lem if not enough observations are present before the next missing value. This issue
can only be somewhat alleviated by reducing the kernel size, which generally might
not be desirable. A potential solution might be too generate a full latent trajectory
from z0, although this would likely be too inaccurate for large datasets.
Initial results showed that both imputation methods lead to very similar model per-
formance with the CNN encoder. Since the model algorithm with PLRNN imputation
takes much longer to train, I opted for using the moving average for the empirical
investigation in this thesis. Still I think it is prudent to further explore this issue
in future work, especially designing and testing an encoder that is capable of di-
rectly handling missing values. For instance, an encoder could be used that does
not take into account temporally adjacent values, and therefore only requires xt to
draw z(l)t . Furthermore, it could be very important to distinguish between types of
missing values, as variables missing due to lack of user input and missing values in
the night phases are fundamentally different. It might even be useful to consider a
two stage imputation, where the generative model is used for imputation in the day
phases, and a mean for the night periods, where we have less information about the
dynamics.

3.2.2 Informative Missingness

Oftentimes, the presence of missing values does not necessarily only correspond to
a lack of information, but can also be informative and provide meaningful insight
on the question at hand [Rubin 1976; Che et al. 2018b; Little and Rubin 2020]. If
that is the case, fundamentally depends on the underlying mechanism that leads to
missing measurements [Rubin 1976]. Here, it is sensible to assume that missing
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data points do not completely occur at random, but are dependent on the values of
other features, the true value of the unobserved variable and the general point in
time where the observation occurred. For instance, it is easy to imagine that partic-
ipants might have a tendency to report more or less at certain hours or weekdays,
or that a patient going through a depressive phase might be less inclined to fill out
a questionnaire on his emotional state. This in turn allows us to potentially exploit
the information inherent in missing values, as their occurrence is likely indicative of
the underlying emotional dynamics.
In the course of this thesis, informative missingness was not yet implemented into
the model framework. Still, I will give a brief outlook, how this could potentially be
approached in future work. We can introduce an indicator variable mt 2 {0,1} that
describes if a time point is missing or not [Che et al. 2018b; Little and Rubin 2020].

mt =

8
<
:

1, if xt is observed

0, otherwise
(3.4)

Notice, that we could simply extend this to an indicator vector mt 2 {0,1}N , if par-
tially observed time points would become more widespread in the future, e.g. due
to the introduction of sensor modalities. The masking time series {mt} can then be
used as an additional feature to train the model on. This requires the introduction
of a new observation model that describes the Bernoulli probability of a time step
missing.

p(mt = 1|zt) = p = 1� p(mt = 0|zt) (3.5)

The probability p can then be parameterized via the canonical logit link function,
which leads to something akin a logistic regression model [Nazábal et al. 2020;
Bommer et al. 2021].

p(mt = 1|zt) = p =
1

1+ e�(�0+� T zt )
(3.6)

It might be beneficial to include additional information on the missing values into
the model framework. For instance, by expanding the observation model to a multi-
categorical distribution, we could indicate different types of missingness, e.g. a third
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categorical label could mean a value is missing due to the participant sleeping. Fur-
thermore, we could construct other features, such as how much time passed since
the last missing value (as seen in Che et al. 2018b), although we might hope that
the model can also learn to construct expressive representations on its own.

3.3 Modeling Ordinal Data

All the features selected for model training were recorded on a Likert scale. As can
be seen in Figure 9, many of these clearly violate the commonly used distributional
assumption of normality. Especially the questions regarding negative affects lead to
strongly skewed and zero-inflated responses. This is not necessarily surprising as de-
pending on how and to whom the question is posed, we would expect the responses
to shift, although it is interesting to see that positive emotions do not exhibit the
same skewness. Additionally, Likert scales are ordinal, which can lead to systematic
errors, if modeled as metric [Liddell and Kruschke 2018].
This means that we need to adapt the model correspondingly to provide a better
description of the data at hand. In variational autoencoders, this is generally quite
straightforward, as we can simply switch out the observation model p✓ (z|x) for the
most sensible distribution. The optimization criterium does not change much, since
one only needs to replace the likelihood of the observation model in the ELBO. This
makes the variational autoencoder a very flexible and powerful modeling framework
for dealing with the specific distributional assumptions of varying data types.
In this section, I will first introduce the multi-categorical observation model (follow-
ing Bommer et al. 2021), as a first attempt to model ordinal data. An implementation
of a categorical observation model is also useful for future studies, as questionnaires
commonly include categorical response variables. We will then focus on how to
specifically model ordinal data by using the ordered-probit (and logit) model [Mc-
Cullagh 1980].

3.3.1 Categorical Observation Model

A categorical or nominal variable can take on a discrete and fixed number of values.
The different categories are defined by some kind of qualitative property, meaning
that no ordering exists between them. Random categorical variables are described
by the categorical probability distribution that is simply given by the probability
values {p1, . . . , pK} of each of the K categories with the constraint

PK
k=1 pk = 1. For
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instance, each individual Likert item can take on one of seven categorical responses.
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Figure 9: The histograms show the overall distribution of the different Likert items in the
EMIcompass dataset. Features associated with negative affects are more zero-
inflated, while positive emotions are more Gaussian-like distributed.

In our case, we need to consider N features indexed by i that are measured at dif-
ferent time steps t. Each potential integer value of the observations xti 2 {1, . . . , K}
corresponds to one of K categories. Which exact integer label {1, . . . , K} is assigned
to each category is of course arbitrary, but using them allows for a more convenient
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notation. An alternative representation can be achieved by using indicator vectors
ct i 2 {0, 1}K⇥1 for which exactly one element corresponding to the observed cate-
gory takes on the value 1 and the rest are 0. The measured values are distributed
according to the following multi-categorical distribution.

p(x|z) =
NY

i

TY

t

KY

k

p(xti = k|zt)[xti=k] (3.7)

The dependency on the latent states is then realized as a generalized linear model
with the canonical logit link function, which ensures that the probabilities stay
bounded in [0,1]. The relative log-odds of the different categories are therefore
expressed as a linear combination of the regression parameters �ik and the latent
states zt [Durstewitz 2017b; Bommer et al. 2021].

log
p(xti = k|zt)
p(xti = K |zt)

= � T
ikzt 8k = 1, . . . , K � 1 (3.8)

The latent vectors are expanded zt 2 RM+1 by a leading column of ones to account
for an offset term. In total, we have one parameter vector �ik 2 R(M+1) for each
scale feature i and category k = 1 . . . K � 1. Finally, by respecting the constraintPK

k=1 p(xti = k|zt) = 1, we can invert the link function and arrive at the categorical
probabilities.

p(xti = k|zt) =
e�

T
ikzt

1+
PK�1

l e�
T
il zt

for k = 1 . . . K � 1

p(xti = K |zt) =
1

1+
PK�1

l e�
T
il zt

(3.9)

To calculate the log-likelihood of the observation model, we can insert the probabil-
ities in the categorical distribution above.
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log p✓ (x|z) =
NX

i

TX

t

KX

k

[xti = k] log p(xti = k|zt) (3.10)

=
NX

i

TX

t

KX

k

[xti = k]

Ç
[xti < K]� T

ikzt � log

Ç
1+

K�1X

l

e�
T
il zt

åå
(3.11)

The categorical observation model is quite costly when it comes to its number of
parameters. Since every feature and category is effectively modeled separately, we
need to optimize N ⇥ (K � 1) ⇥ (M + 1) parameters. This comes at no surprise,
since categorical data is only defined by its qualitative groupings. In the case of
ordinal data, such as the Likert items, we do have information about the ordering
of the different responses that should be taken into account when formulating the
model. Using nominal classification on ordinal data is effectively throwing away
information, which might not be permissible when working in small data environ-
ments [Gutiérrez et al. 2016].
My code is based on the implementation of the categorical observation model from
Philine Bommer [Bommer et al. 2021], former master’s student at DurstewitzLab. I
improved upon it by vectorizing the operations for faster training and increasing its
numerical stability.

3.3.2 Ordinal Variables

As previously mentioned, ordinal data is not associated with a metric space. While
we do have a natural ordering between items, such as "strongly disagree" and "dis-
agree", there exists no distance measure between categories, and it can not be guar-
anteed that the different response items are equidistant [Winship and Mare 1984;
Liddell and Kruschke 2018]. The positive integer labels that are commonly assigned
for the different ordinal responses only indicate the ordering of the values, but do not
provide information about the spacing between points. One of the most widespread
examples of ordinal data are Likert items, which measure the response of an indi-
vidual to a question on a ordered-categorical scale [Likert 1932]. An aggregation of
multiple Likert items is also referred to as a Likert scale.
Ordinal data is commonly assumed to being generated from a underlying continuous
variable. This latent variable is segmented into contiguous intervals that represent
the different categories of the ordinal scale in question [McCullagh 1980; O’Brien
1985]. For instance, an individuals emotional state, e.g. feeling of happiness, is
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likely best described as a continuous variable. When answering a questionnaire, the
participant is then forced to report on a discrete scale. This quantization process
connecting internal representation to the measurement scale might take on many
different forms, e.g. it has been suggested that humans tend to perceive many dif-
ferent types of stimuli on a logarithmic scale [Sun et al. 2012; Varshney and Sun
2013]. In general, a variety of errors can occur if ordinal observations are analyzed
as if they were metric interval-level data [Liddell and Kruschke 2018], although ar-
guments have been made that this is commonly less of an issue [Norman 2010]. To
a certain extent this question is also strongly related to the domain of interest, and
if the study questions can be designed in such a way that it can be guaranteed that
the distances between responses are at least roughly equivalent.
Let us denote the unobserved continuous variable as x⇤t i that is divided into intervals
by the threshold parameters �0

i1, . . . ,�0
i(K�1) that correspond to the different discrete

responses that the observed ordinal variable xti can take on [Winship and Mare
1984].

xti = k if �0
i(k�1) < x⇤t i  �0

ik (3.12)

The interval points are assumed to be ordered with �0
i0 = �1 and �0

iK =1:

�1 < �0
i1 < �

0
i2 < · · ·< �0

i(K�1) <1 (3.13)

If we assume that the latent variable is distributed according to some kind of proba-
bility density, we can then describe the probabilities of the different Likert responses
as the cumulative probabilities between the respective cut-points of the latent distri-
bution [Liddell and Kruschke 2018], as illustrated in Figure 10 .

p(xti = k) = p(�0
i(k�1) < x⇤t i  �0

ik) = Fx⇤t i
(�0

ik)� Fx⇤t i
(�0

i(k�1)) (3.14)

3.3.3 Ordinal Regression Models

The dependency on the latent states zt of the generative model can again be ex-
pressed as a generalized linear model. The underlying continuous variable x⇤t i is
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Figure 10: In the upper plot, a Gaussian observation model for ordinal data is depicted.
There, we assume that the numerical integer values associated with the different
Likert response items can be mapped onto an interval scale. The lower diagram,
shows the distribution of the underlying latent variable x⇤t i segmented into inter-
vals by the threshold parameters. The cumulative probabilities associated with
the intervals under the curve correspond to the probabilities p(xti = k) presented
in the bar plot.

assumed to be a linear function of the latent states zt and the model parameters
� T

i 2 RM . ✏t i is an independently distributed noise term with zero expectation
E[✏t i] = 0.

x⇤t i = �
T
i zt + ✏t i (3.15)

The cumulative probabilities of the ordinal response variable xt i satisfy the following
equation with F✏t i

being the cumulative density function of the error term [McCul-
lagh 1980; Winship and Mare 1984].
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p(xti  k|zt) = p(x⇤t i  �0
ik)

= p(� T
i zt + ✏t i  �0

ik)

= p(✏t i  �0
ik �� T

i zt)

= F✏t i
(�0

ik �� T
i zt) (3.16)

It now becomes evident that the distribution F✏t i
takes the role of an inverse link

function that we denote as g�1. Therefore, the distributional assumption we make
for the noise ✏t i determines the exact form of the generalized linear model. The
two most common choices are either the logistic or the normal distribution that re-
spectively lead to the ordered logit and ordered probit model [Winship and Mare
1984], although a variety of other distributions can be considered as well, e.g. the
proportional hazards model rooted in survival analysis [McCullagh 1980; Gutiérrez
et al. 2016].
The ordered logit model is very similar to the multiple logistic regression model with
the difference being that the cumulative probabilities p(xti  k|zt) are parameter-
ized instead of the probabilities p(xti = k).

g(p(xti  k|zt)) = log
p(xti  k|zt)

1� p(xti  k|zt)
= �0

ik �� T
i zt (3.17)

The model is also called the proportional odds model [McCullagh 1980], since the
odds (xti  k|zt) of xti  k can be expressed as:

(xti  k|zt) =
p(xti  k|zt)

1� p(xti  k|zt)
= exp(�0

ik �� T
i zt) (3.18)

If we now consider the ratio of odds for different covariate values zt and z0t

(xti  k|zt)
(xti  k|z0t)

= exp(�� T
i (zt � z0t)) (3.19)

we see that the ratio only depends on the difference between covariate values, and
is independent of the category k in question. In other words, the odds of all ordinal
response categories k change in the same proportionate way for different zt .
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Finally, we can invert the link function to arrive at an expression for the cumulative
probabilities.

p(xti  k|zt) =
exp(�0

ik �� T
i zt)

1+ exp(�0
ik �� T

i zt)
(3.20)

As discussed, the alternative ordered probit model simply results from using the
inverse standard normal distribution ��1 as a link function [Aitchison and Silvey
1957].

p(xti  k|zt) = �(�0
ik � � T

i zt) (3.21)

I implemented both the ordered probit and logit model, and finally chose to primarily
work with the ordered logit model, as its computation is slightly more straightfor-
ward. In practice, both models usually lead to very similar empirical results [Ro-
drígues 2007], as the logistic and normal distribution are not that different. My
experience when testing both models corroborated this assessment.
During optimization, it is not always necessary to separately enforce the ordering
of the threshold parameters �0

i(k�1) < �
0
ik [Greene and Hensher 2010; Christensen

2018], e.g. sometimes the threshold parameters stay ordered after careful initial-
ization. This was not the case here, where the ordering of the parameters usually
broke down only after a couple of epochs. Thus, I settled on using the following
reparameterization, as suggested in Greene and Hensher 2010, to guarantee the
non-decreasing nature of the threshold parameters.

�0
ik = �

0
i(k�1) + e↵

0
ik = ↵0

i1 +
kX

l=2

exp↵0
il with �0

i1 = ↵
0
i1 (3.22)

Finally, regardless of the chosen model, we can simply calculate the probabilities
p(xti = k|zt) from the cumulative probabilities,

p(xti = k|zt) = p(xti  k|zt)� p(xti  k� 1|zt) (3.23)
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which then can be inserted into the likelihood term.

log p✓ (x|z) =
NX

i

TX

t

KX

k

[xti = k] log p(xti = k|zt) (3.24)

The model could be easily expanded by choosing a nonlinear function, e.g. a neural
network, instead of the linear model in Equation 3.15 [Mathieson 1996; Nazábal
et al. 2020]. Although this might greatly increase the models flexibility [Gutiérrez
et al. 2016], I opted for using a linear model as I did not want to excessively inflate
the number of observation model parameters. A too expressive observation model
might increase the danger of overfitting, especially when working with small data,
and might in turn make it harder for the latent model to properly learn the temporal
dynamics.

3.4 Hierarchical Parameter Estimation

A central challenge when working with many deep learning architectures is the sheer
amount of data required to train them. For instance, state of the art image classi-
fication [Dai et al. 2021] or language models [Brown et al. 2020] require millions
of parameters and data points to be successfully trained. In contrast to that, data in
many scientific disciplines, e.g. materials science [Zhang and Ling 2018], biomedi-
cal engineering [Shaikhina et al. 2015] or psychiatry [Cearns et al. 2019; Durstewitz
et al. 2019; Koppe et al. 2021] is generally much less abundant and more costly to
gather. Especially when working with self-reported data, there are always practical
limits to how often participants are willing to answer a survey [Wen et al. 2017].
Additionally, it is prudent to consider that high sampling frequencies might also put
a mental burden on the participant [Stone et al. 2007] that could in turn decrease
the potential benefits of the intervention framework. Therefore, to reach the goal of
individualized predictions and interventions, it is necessary to develop methods that
are capable of dealing with smaller sample sizes [Koppe et al. 2021].
In Section 2.3.7, we already discussed the possibility of integrating additional data
modalities into the model, e.g. sensor data directly collected from a participants
smart phone. These types of measurements can obviously be collected at a much
higher frequency, and might help to somewhat alleviate the small data problem, al-
though the combined modeling of differently sampled data is a non-trivial challenge
in itself.
Here, I will discuss an alternative approach inspired by transfer learning [Pan and
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Yang 2010; Weiss et al. 2016]. The general idea behind transfer learning is to
leverage knowledge from another closely related problem domain to the question
at hand, which allows models to be trained with even a fairly limited amount of
data. More specifically, this is oftentimes realized by using model parameters that
were pre-trained on a larger source dataset to initialize a new model and fine-tune
its parameters on the smaller dataset in question. The key assumption is that both
datasets are sufficiently statistically related [Weiss et al. 2016], such that the model
can already extract some common general features and statistical properties from
the source dataset. In a psychiatric context this could mean attempting to exploit
information from a group of participants to strengthen the quality of the individual
subject-level predictions [Durstewitz et al. 2019; Koppe et al. 2021]. In such a way,
predictions could hopefully be made more robust [Durstewitz et al. 2019], while at
the same time still allowing for personalized models that can capture the unique-
ness of each patient or participant [Chekroud et al. 2017]. For larger study cohorts
subjects will tend to be more diverse and exhibit less homogeneous characteristics,
e.g. because they were recruited from a larger geographic range. In these cases, it
might be useful to group participants into clusters based of some kind of measure of
similarity before training the models [Cearns et al. 2019].
As a first step towards this goal, I implemented a form of hierarchical parameter
estimation that allows the model to be jointly trained on time series of different par-
ticipants. The general idea is to infer a subset of the model parameters ✓group at the
group-level, while fine-tuning the rest of the parameters ✓ ( j)subj individually for each
subject j = 1, . . . , Nsubj. I chose to train the parameters of the basis expansion and
the observation model at a subject level, leaving the rest of the generative model
parameters to be inferred over all participants. Additionally, the parameters � of
the recognition model are also shared.

✓group = {A,W,h,⌃}
✓ ( j)subj =

¶
✓ ( j)obs, {↵

( j)
b ,h( j)b }

©
for j = 1, . . . , Nsubj (3.25)

In future studies, one could test many alternative combinations of group and subject-
level parameters. Additionally, it might be fruitful to introduce new expressive pa-
rameters that are especially suitable for multi-level parameter inference. Finding
these parameters is not a very straightforward task, but could potentially be inspired
by domain knowledge, e.g. parameters that are directly interpretable. In the same
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Algorithm 1: Hierarchical parameter estimation
input : subject time series x( j) j = 1, . . . , Nsubj
output: model parameters ✓ = {✓group, ✓subj}, �

1 ✓ ,� Initialized randomly;
2 for i 0 to Nepochs do
3 Partition

�
x(1), . . . ,x(Nsubj)

 
into L mini-batches bl =

�
x( j1), . . . ,x( jMb

)
 
;

4 for bl 2 {b1, . . . , bL} do
5 for x( j) 2 bl =

�
x( j1), . . . ,x( jMb

)
 

do
6 ✏(l) ⇠ p(✏);
7 L̃x( j)(✓group,✓ ( j)subj,�) x( j), ✏(l), ✓group, ✓ ( j)subj, �;
8 end
9 gbl

 r✓ ,�
1

Mb

P
x( j)2bl

L̃x( j)(✓group,✓ ( j)subj,�);
10 Update the parameters ✓ ,� with regard to the average gradients gbl

;
11 end
12 end

spirit, one could attempt to find ways to initialize parameters through other prior
information that might potentially be available on a subject, such as epigenetic risk
factors [Keverne and Binder 2020].
As mentioned, the model is simultaneously trained on the time series of all par-
ticipants. During each epoch the individual subject time series x( j) = {xt}( j) are
randomly grouped into L different mini-batches bl =

�
x( j1), . . . ,x( jMb

)
 

of size Mb.
Thus, the mini-batches b1, . . . , bL define a partitioning over the set of subject time
series {x(1), . . . ,x(Nsubj)} so that each time series x( j) belongs to exactly one mini batch
bl . Notice that this implies that the time series in the same mini-batch can be of dif-
ferent length, although all time series in the EMIcompass study cover a very similar
duration. If the number of time series is not divisible by the batch size Mb the last
mini batch contains less elements. My implementation also allows for the subject
time series to be split up into smaller sequences, which alternatively can be used
to construct the batches. I used this feature very rarely as smaller sequences carry
the danger of losing too much temporal structure, and the individual time series
are already very small to begin with. We then iterate through all the mini-batches,
and perform the gradient updates jointly for each mini-batch of observations. The
gradients with respect to the group-level parameter need to be averaged over the
different time series in the mini-batch, while the subject-level gradients only depend
on the respective subject time series.
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r✓group
Lbl
(✓ ,�) = r✓group

1
Mb

X

x( j)2bl

Lx( j)(✓group,✓ ( j)subj,�) (3.26)

r✓ ( j)subj
Lbl
(✓ ,�) = r✓ ( j)subj

Lx( j)(✓group,✓ ( j)subj,�) (3.27)

The epoch is concluded after iterating through all of the mini-batches and perform-
ing L parameter updates. Finally, we note that stochasticity is injected into the al-
gorithm in two places; first through the random partitioning of the time series into
mini-batches, and second by Monte Carlo sampling ✏(l) ⇠ p(✏) [Kingma and Welling
2019]. The hierarchical optimization procedure is summarized in Algorithm 1.
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4 Empirical Investigation

In this section, I will present a preliminary empirical investigation of the model
framework using the EMIcompass data set presented in Section 3.1, and then at-
tempt to generate realistic benchmark data to further test the model.

4.1 Prediction Evaluation

4.1.1 Cross-Validation for Time Series

To accurately evaluate the quality of predictions we can expect in future application
settings, we need to calculate an out-of-sample error. Using the same data for model
training and evaluation creates the risk of severely overestimating the model capa-
bilities by overfitting the training data [Hastie et al. 2009; Durstewitz 2017b]. This
can be especially problematic for complex model architectures consisting of many
parameters that are able to very accurately represent the training data, but in doing
so overly adapt to the noise present in the data, leading to poor performance on
new samples. On the other hand, many modern deep learning models apparently
exhibit better generalization in the overparameterized regime, defying the conven-
tional wisdom that overly expressive models typically exhibit low accuracy on test
data [Belkin et al. 2019]. This phenomenon has been attributed to the effective us-
age of regularization techniques, but is still debated and much of the communities
understanding of how model complexity and sample size impact generalization still
seems to be developing [Nakkiran et al. 2021; Zhang et al. 2021].
In any case, it is difficult or impossible to theoretically evaluate the optimal model
complexity or find an estimate for the minimum amount of data required to success-
fully train a model [Koppe et al. 2021]. Therefore, it is prudent to perform a careful
empirical investigation to find how accurate the models predictions will be in prac-
tice. Cross-validation is one of the most widespread techniques for estimating the
expected prediction error [Hastie et al. 2009]. The basic idea is to remove a subset
of the training data before the model is fitted. After the model parameters are esti-
mated it can then be used to test how the models predictions generalize for unseen
data. To find a robust estimate of the generalization error and to make more efficient
use of the data, the procedure is usually performed various times by partitioning the
data set into k segments, and using each segment once as a test set, while fitting the
model on the remaining data. The average of the k test set errors can then be used
as a prediction error estimate.
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However, when working with time series data simple cross-validation is problem-
atic, as the i.i.d. assumption does not hold anymore due to temporally adjacent time
points usually being highly dependent on each other [Bergmeir and Benítez 2012;
Koppe et al. 2021]. In that case, it can not be assumed that training and test set
are independent of each other, and one needs to be careful to respect the temporal
dependency structure present in the data [Bergmeir and Benítez 2012]. Typically
one selects a section at the end of the time series for an out-of-sample evaluation to
ensure that only prior observations are used for the forecast, which also mimics the
usual application setting [Tashman 2000]. We can then use the model to calculate
ahead predictions x̂k+1, x̂k+2, . . . from the last point of the training set xk, also called
the forecast origin, and compare the results to the test data xk+1, . . . ,xT .
A problem with this approach is that we can only calculate one forecast per time
series, which might lead to the error estimate being highly dependent on the chosen
forecast origin. This could be especially be problematic, if the data contains non-
stationary behavior. Alternatively, different train-test splits can be used by sequen-
tially moving the forecast origin and retraining the entire model on each training
data set. This also sometimes involves removing values from the beginning of the
time series to keep the length of the training set constant [Tashman 2000].
There exist a variety of other evaluation methods for time series data [Bergmeir and
Benítez 2012], but I opted for using a small test set at the end of each time series.
This choice stems from the fact that the empirical data available only contains a very
small number of time steps (around 100), which made it unfeasible to significantly
shorten the training data. For future studies covering longer time periods, I would
argue for using a rolling forecast origin for evaluation. I also average the prediction
error over the models of multiple participants, which should help in getting a more
accurate estimate for the out-of sample predictions.
The error on the training set can be calculated in similar fashion, with the difference
being that we can choose any time point that is not too close to the end of the train-
ing time series as forecast origin. This allows us to calculate an average error over
multiple forecasts for each training set.

4.1.2 Ordinal Predictions

Predictions on the test set can be produced by propagating the latent model
p✓ (zt |zt�1) forward. We do so by using the recognition model to estimate a latent
state at the forecast origin ẑk = Eq�[zk|x1:k] and then itertively calling the latent
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step until we reach the time step we want to predict ẑk+n. The final latent state is
then inserted into the observation model p(xk+n|zk+n), from which we can generate
a prediction x̂k+n by using the expected value Ep✓ (x|z)[xk+n|ẑk+n] of the distribution.
In this thesis, I made the compromise to use the MSE for evaluating the predictions
of the ordinal data, while also calculating the categorical precision to check if the
MSE somehow distorts the results. This choice was primarily made to be able to
quickly test the first model iterations. Of course, it would be ideal to build up an
evaluation pipeline that also utilizes the ordinal character of the data, but this was
not possible due to time constraints.

4.1.2.1 RMSE

For the EMIcompass data the n-step ahead prediction error is calculated for n =
{1,2, 3} steps, while on the benchmark data it is possible to evaluate longer ahead
predictions. The n-step RMSE for one time series j consisting of N Likert items i is
then given by:

RMSE( j)n =
1p
N
kx( j)k+n � x̂( j)k+nk2 =

1p
N
kx( j)k+n � Ep✓ (x|z)

[x( j)k+n|ẑ
( j)
k+n] k2 (4.1)

If an observation is missing, the corresponding RMSE term is dropped. The RMSE
values from the different time series models are then averaged over the entire group
of participants, which gives us the following summary measure

RMSEmodel
n =

1
Nsubj

NsubjX

j

RMSEmodel,( j)
n =

1
Nsubj

NsubjX

j

1p
N
kx( j)k+n � x̂( j)k+nk2 (4.2)

As a simple baseline measure, we use the mean of the training set as a constant
forecast for the test set, and also determine its RMSE.

RMSEmean
n =

1
Nsubj

NsubjX

j

RMSEmean,( j)
n =

1
Nsubj

NsubjX

j

1p
N
kx( j)k+n �

1
kj

kjX

t=1

x( j)t k2 (4.3)

We then calculate the difference of both error measures and average over the partic-
ipants RMSEdiff

n = 1
Nsubj

PNsubj

j (RMSEmodel,( j)
n �RMSEmean,( j)

n ) = (RMSEmodel
n �RMSEmean

n )
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to gain a sense if the model is performing better than a simple predictor.

4.1.2.2 Confusion matrix and Precision

As it is common for categorical classification tasks, we can construct a confusion ma-
trix C , where the entries Ci j count the number of observations i that were predicted
to be in class j. Accordingly, we need to use the mode x̂ t i = argmax

k
p(xti = k|zt)

instead of the expected value for prediction. We can treat each of the K = 7 ordinal
values of the N Likert items as a different class label, which gives us a K ⇥K dimen-
sional confusion matrix C (i) for each feature. Here, we will determine the confusion
matrix for the single time point of the relevant n-step ahead prediction, but we could
of course summarize the predictions over multiple time points.
We can then calculate an overall classification metric for the n-step ahead-prediction
of a time series j by averaging over the entries of the different categories. This en-
sures that all observed values contribute the same, rather than weighting each class
equally. The precision is then defined as the ratio of the number of correct predic-
tions divided by the total number of predictions across all categories.

Precision( j) =

PN
i=1

PK
l=1 C (i)l lPN

i=1

PK
l=1

PK
m=1 C (i)lm

(4.4)

Again, we ignore missing observations, and average the precision score over the
entire group of participants.

4.2 EMIcompass Data

As discussed in Section 3.1, I am using the data collected during the EMIcompass
study to conduct the first empirical evaluations of the model. In total, the model is
tested on 90 subject time series that at least contain 35 non-missing time points, and
enough consecutive time points at the end of the time series so that a small test set
can be constructed. For each time series a separate model is trained. By averaging
the prediction error across the entire group, we then calculate a summary measure
for the model’s performance, as described in Section 4.1.2.
These time series are very challenging to train on, as they are very short, contain
many missing values and can exhibit very erratic and noisy behavior. Additionally,
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we observe seemingly non-stationary behavior in some of the time series that is diffi-
cult to distinguish from slow oscillations. The time series vary strongly for different
participants and features, with some almost being constant in time, while others
seemingly showing no regular pattern, see Figure 11.

0 20 40 60 80 100 120
time steps

0

5

(a) Nearly Constant

0 25 50 75 100 125 150 175
time steps

0

5

(b) Slow Time Scale

0 20 40 60 80 100
time steps

0

5

(c) Erratic Behavior

Figure 11: The EMIcompass dataset contains time series of varying time scales. Many of
the time series are quite constant in time, while others exhibit more erratic or
non-stationary behavior.

The different Likert items can be approximately grouped into two categories, de-
pending on whether they are associated with a negative or a positive affect. The
positive Likert items are more Gaussian-like distributed, while the negative affects
are zero-inflated, as we saw in Figure 9. The features also exhibit a moderate amount
of correlation, which can be determined by calculating the Spearman rank order cor-
relation coefficient ⇢ between all the features i and j, as displayed in Figure 12.

⇢(i j) =
cov(R(xi), R(x j))
�R(xi)�R(x j)

2 [�1, 1] (4.5)
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R(xi) denotes the ranks of all the ordinal observations for feature i. The correlation
between the features is important to consider, as high correlation might indicate that
some of the features are superfluous and do not add further information in training.
Of course the question of feature selection is also tied to the application setting, e.g.
what emotional attributes are important to predict and improve from a psychiatric
standpoint.
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Figure 12: Likert items measuring positive attributes are positively correlated with each
other, with the same holding true for negative emotions. Unsurprisingly, the
Spearman correlation for negative and positive features is negative.

On the other hand, this should also be investigated empirically, as a specific subset
of features might prove to be especially predictive to select adequate interventions.
From a study design there also exists a trade off between the sampling frequency
and the number of Likert items on the questionnaire. The more extensive and time
consuming a single EMA becomes, the less often we can expect participants to be
willing to answer it.
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Figure 13: The upper row shows the 1-step ahead prediction error for the training set, while
the lower row corresponds to the test set. The plots positioned on the left display
the RMSE. The right figures show if the model is performing better than simply
using the mean of the training set as forecast; if a value falls under the black line
the model is more accurate. The error bars correspond to the standard error of
the mean over the different participants.

4.2.1 Hyper-Parameter Search

All models are trained with the ordinal observation model described in Section 3.3.3.
The CNN-encoder for the mean of the approximate posterior consists of four layers
with the respective kernel sizes {11,7, 5,3}, while the covariance is parameterized
with a single layer, as suggested in Warkentin 2021, with a kernel window of size 11.
The models are trained for 10.000 epochs with the Adam optimization method and a
learning rate of 0.001 [Kingma and Ba 2015]. The manifold attractor regularization
is used on MMAR

M = 0.3 of the states with �MAR = 1. The effect of different MAR
parameters will be investigated later. As the time series are very short, we do not
split them up into batches. The evaluation after training is performed on the model
associated with the lowest epoch loss, which typically corresponds to the last epoch.
To find the optimal number of latent parameters M and bases B, a hyper-parameter
grid search is conducted for M 2 {10,40, 70,100, 150} and B 2 {1,5, 10,15}.
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As can be seen in Figure 13, a larger number of latent states and bases improves
performance on the training set up to a RMSE of approximately 0.4 for M = 70 and
B = 10 after which little change can be observed. In contrast to that, the number of
dynamical parameters does not affect the performance on the test set, for which the
RMSE remains slightly above one. The model is not able to perform a better out-of
sample forecast than the mean. This result is also consistent with the categorical
precision.
Although the predictions are subpar at this point, we can occasionally observe inter-
esting oscillatory patterns in the freely generated trajectories, e.g. see Figure 14.
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(c)

Figure 14: The predicted trajectories of different subjects (orange) are freely generated from
z0. At the start of the test set (marked in red), the latent process is reinitialized
using the recognition model.

Of course, it is speculative to assume that the generated patterns here are indicative
of some kind of true underlying emotional dynamics, but it is still intriguing to
see that the model does sometimes recover more behavior than a simple constant
process. If longer time series should become available in the future, it could be
especially interesting to test if participants grouped according so some kind of
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Figure 15: The diagram illustrates the 1-step ahead prediction error for different parameter
settings for the MAR (M = 70, B = 15).
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Figure 16: The 1-step ahead prediction does not change significantly for longer training time
(M=70, B = 15).

criteria, potentially motivated by psychiatric insight, also show similarities in the
underlying latent space.

To see if the prediction performance on the EMIcompass dataset can be improved, the
effect of the manifold attractor regularization is evaluated for the parameter settings
�MAR = {0.1,1, 10,100} and

Mreg

M = {0.1, 0.3,0.7, 1.0}. As presented in Figure 15, the
out-of sample performance is still only equivalent to the mean. Regularizing only a
small subset of the states or all of them leads to slightly worse performance on the
test set, with the optimal

Mreg

M and �MAR being around 0.3 and 1.0.
Drastically increasing the training time to up to 100.000 epochs only slightly reduces
the training error (see Figure 16), while increasing it on the test set, most likely due
to stronger overfitting.
As the model consists of a large amount of parameters in contrast to the small number
of data points available, an additional regularization term for the observation model
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Figure 17: The 1-step ahead prediction error for different L1 regularization parameters �obs
(M=70, B = 15).

parameters is introduced. This is also done in the hopes to encourage the model
to put more emphasis on learning the right dynamics via the latent process, instead
of overfitting too much through the observation model. We do so by adding a L1

regularization term to to the likelihood. The �0 parameters are not regularized as
they define the thresholds between the different ordinal responses, and also make
up a smaller fraction of the parameters as they do not scale with the number of latent
dimensions M .

L
obs
reg = �obs

NX

i

MX

m

|�im| (4.6)

We can see in Figure 17 that the regularization term increases the error on the train-
ing set. In contrast to this, we observe no significant change on the test set, where
the model performance remains very similar to the mean for all parameter settings.
The added regularization seems to push the model more towards constant trajec-
tories, which is not in itself a bad thing, as this might just indicate that the model
overfits less of the noise. Again, it is difficult to differentiate between the capabilities
of the model and the natural limitations of the data.
To investigate if certain features are more predictable than others, the RMSE is in-
dividually calculated for each feature in each subject time series, and averaged in
the same way as before over the entire group of participants. Although the perfor-
mance does not vary greatly between the different Likert items, see Figure 18, we
still see for a subgroup of features a fairly significant deviation from the mean pre-
diction error. Interestingly, all the features that are overall easier to predict have
the shared characteristic that they are associated with a negative affect. This could
potentially be a very interesting finding, which should be investigated more in the
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Figure 18: The 1-step ahead prediction error of each feature averaged over all subject time
series (M = 70, B = 15).
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Figure 19: The 1-step ahead prediction error for the categorical and the ordinal observation
model (M = 70, B = 15).

future to ensure that this is not just a quirk of this specific data set, e.g. through
an appropriate statistical test. It is also important to remember that a feature being
more predictable is not the same thing as it being more predictive of the underlying
emotional dynamics. Although it might turn out that some Likert items are espe-
cially difficult to forecast, they still might be very informative for the intervention
selection.
Finally, I tested the ordinal against the categorical observation model. We would
assume that the categorical model performs better on the training set, as it is more
expressive than the ordinal model due to the individual parameterization of each
category. Correspondingly, we would hope to see the ordinal model generalize better
on the test set. Here, as displayed in Figure 19, there is seemingly little variation
between the two observation processes, but we can still see a slight indication of the
expected difference. In any case, even if both models work similarly well, one would
prefer using the ordinal observation model as it requires less parameters.
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Figure 20: The 1-step ahead prediction error averaged over all subjects for the hierarchical
parameter estimation compared to the average performance of the individually
trained models (M = 70, B = 15).

4.2.2 Hierarchical Parameter Estimation

In the hopes of augmenting the predictive strength of the individual time series
through group-level information, the hierarchical parameter estimation as described
in Section 3.4 is used. All 90 time series are jointly trained, with individual obser-
vation model and basis expansion parameters for each time series, while the rest of
the parameters are shared across the entire group. In each epoch, the time series
are split up into nine batches that each contain ten subject time series. The model is
again trained for 10.000 epochs, but now each epoch corresponds to nine gradient
updates. As can be observed in Figure 20, the hierarchical parameter estimation
does not manage to significantly improve upon the individual-level model forecasts
on the test set, while at the same time performing much worse on the training
set and therefore seemingly reducing the amount of overfitting. Varying the batch
size has little effect on this result. Here, the hierarchical parameter estimation
seems to encourage more constant latent space dynamics and thus performs more
comparable to the mean. It is at this point very difficult to make any conclusions
about the functioning of the procedure. If the data truly does not contain enough
information to infer more complicated dynamics, constant latent states would be
the expected result. On the other hand, the hierarchical parameter estimation
might just generally push the dynamics towards group averages, which of course is
not the intended effect.
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4.3 Benchmark Data

The empirical investigation so far has shown that the data from the EMIcompass
study is likely not extensive enough to make clear statements about the functioning
of the proposed model setup. It is unclear, where the strengths and weaknesses
of the model lie, as we might be dealing with a ceiling effect, where we can not
really discern between different model configurations and hyper-parameters. The
only real remedy for this issue is to gather more data and especially increase the
number of observed time points. At this point in my thesis, I did not have access
to a more comprehensive empirical data set, so I focused on creating a method
to produce a fairly realistic benchmark data set for the ordinal mobile data. This
allows for the generation of unlimited simulated time series data, which can then
in turn be used to thoroughly evaluate the model and its limitations. As mentioned
before, working with smaller data sets is a common challenge in many scientific
contexts, e.g. in medicine and psychiatry [Koppe et al. 2021], so it is especially
important to find a principled way to test how much data is needed for sensible
forecasts. Thus, a benchmark data set is also very important to inform future study
design, e.g. how many participants or what kind of sample frequencies are required.

4.3.1 Underlying Dynamics

The first step for creating benchmark data involves generating artificial latent trajec-
tories from a chaotic system. This is partially motivated from the fact that a number
of psychiatric phenomena, such as schizophrenia [Bob et al. 2009] or bipolar disor-
ders and recurrent depressions [Gottschalk et al. 1995; Ortiz et al. 2021] have been
associated with chaotic system dynamics [Durstewitz et al. 2021]. Some studies also
suggest that especially for healthy subjects mood fluctuations might be determined
by chaotic processes [Ortiz et al. 2021]. As the available empirical time series are
very short, it is not possible to confirm if the system exhibits chaotic tendencies, or if
the irregularities are simply due to a high amount of noise or external inputs to the
system. In any case, we will later attempt to confirm that the generated benchmark
data is fairly similar to the empirical data.
The goal is now to select an appropriate chaotic dynamical system as a benchmark
model of the latent process. The Lorenz attractor [Lorenz 1963] is arguably one of
the most famous examples of a chaotic system. The geometry of the attractor is char-
acterized by two "wings", which give rise to the iconic "butterfly" shape. Thus, the
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Figure 21: The characteristic 3D-shape of the Lorenz (� = 10, ⇢ = 28, � = 8/3) and the
Rössler attractor (a = 0.1, b = 0.1, c = 14).

Lorenz attractor implies a very specific temporal structure that is defined by the time
scales contained in each wing, and the time it takes the system to switch between
them. As we will later see, the data does not seem to contain two characteristic time
scales, which makes the Lorenz system impractical for our purpose. For this reason,
I opted for using the so called Rössler attractor that behaves similar to the Lorenz
system, but has a simplified topological structure that only contains one spiral, see
Figure 21 [Rössler 1976]. The Rössler system is described by a set of three ordinary
differential equations.

ẋ=

0
BB@

ẋ

ẏ

ż

1
CCA = f(x) =

0
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�y � z

x + a y

b+ z(x � c)

1
CCA (4.7)

In accordance with common practice, the parameters are set to a = 0.1, b = 0.1, c =
14. We also inject the system with process noise, which converts the system of equa-
tions f(x) to a stochastic one [Bärwolff 2020]. For each of the three Rössler dimen-
sions we add an independent driving Wiener process dW = (dWx , dWy , dWz)T . As
the Wiener process is not differentiable, we bring the equations into the following
form:
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dx = f(x) d t + CdW = f(x) d t + d✏ (4.8)

Correspondingly, the matrix C = diag(cx , cy , cz) is diagonal with all the entries as-
sumed to be constant in time. Each matrix entry ci is set to

p
10�5 times the standard

deviation �i of the Rössler system in the respective dimension. In other words, the
noise is generated by drawing from the Gaussian term d✏ ⇠ N (0, 10�5d t ⇥ I). To
solve the equations and generate trajectories from the system, the famous Itô inte-
gral is used. More specifically, I apply the itoint routine from the package sdeint
with a step size of �t = 0.0005. The system is randomly initialized close to the
attractor, and a transient of 100.000 time steps is cut off.

4.3.2 Ordinal Trajectories

After the latent trajectories zt have been generated, we can sample the simulated
ordinal trajectories from a categorical distribution parameterized by an ordered-logit
model that uses the latent states as input, as discussed in Section 3.3.3.

xti ⇠ p(xti|zt) =
KY

k=1

p(xti = k|zt)[xti=k] (4.9)

The probabilities p(xti = k|zt) are determined by the cumulative probabilities
p(xti  k|zt) that in turn can be expressed through a generalized linear model with
a logit link function.

p(xti  k|zt) =
exp(�0

ik �� T
i zt)

1+ exp(�0
ik �� T

i zt)
(4.10)

4.3.2.1 Observation Model Parameters

The question becomes how to find sensible parameters �0 and � for the creation
of the benchmark data. First, I attempted to simply reuse the parameters from the
observation models that were trained on the EMIcompass dataset. This did not
prove to be fruitful, as the parameters need to be in good correspondence with
the respective latent process to arrive at reasonable trajectories. I attempted to
fine-tune the parameters by hand, e.g. by changing the amplitude of the generated
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latent process or by shifting the threshold parameters, but this did not lead to much
success.
Finally, I settled on fitting the observation model parameters in such a way that
the overall distributions of the generated features match with the histograms of the
Likert items calculated from the empirical data (see Figure 9). This is done by using
multiple simulated latent trajectories as input and then optimizing the parameters
by least squares so that the deviation between the distributions of the empirical and
simulated data is minimized. After solving some numerical issues with the optimizer,
the procedure worked well, and the simulated data now perfectly reproduces the
overall distributions from the EMIcompass data set, see Appx. Figure 26. Thus,
the benchmark data also contains the characteristic Gaussian-like and zero-inflated
features.
To impose a similar feature correlation structure as observed in the EMIcompass
data, the signs of a subset of the �i parameters were manually changed. In doing
so, we arrive at a similar Spearman rank order correlation matrix, see Appx. Figure
27, compared to the one estimated from the empirical data.

4.3.2.2 Time Scales

So far, we only focused on reproducing overall properties of the empirical data, but
neglected to enforce a specific temporal structure. A general challenge lies in the
fact that the given empirical time series are very short, so it is difficult to be certain
about what kind of dynamics should be introduced into the benchmark data.
To gain a sense of the time scales present in the empirical data, the time series are
fast Fourier transformed feature-wise (by using the np.fft.rfft routine). The indi-
vidual subject time series are not long enough to perform a Fourier transformation
in a sensible way. For this reason, one long time series is constructed by attaching
multiple subject time series to each other. Time series that exhibit very small vari-
ance and only nearly constant behavior are discarded, as they do not provide us with
any interesting information about the temporal dynamics. In future more sophisti-
cated criteria might be thought of to sensibly group the participants according to the
observed dynamics. Missing value gaps that are longer than eight time steps, which
mostly correspond to the night phases, are cut out of the time series. The rest of the
missing observations are imputed by a moving average with a Gaussian kernel. Ad-
ditionally, the data is standardized before apply the Fourier transformation. Finally,
the resulting power spectrum is smoothed with a Gaussian kernel. Before plotting,
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the frequencies are re-scaled to account for the filtered out night phases.
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Figure 22: Smoothed power spectrum of the Likert item associated with guilt. The red line
indicates the largest frequency component, and the frequencies are given in days
under the assumption that two time steps are 1.5 hours apart.

An example power spectrum of a single Likert item is presented in Figure 22, for all
features see Appx. Figure 28. We do not observe a very sharp peak in the power spec-
trum, but can still clearly see that most of the power is found in the low-frequency
components. On average, the maximum frequency corresponds to a period length
of ⇠ 13.5 days.
In general, these low-frequency oscillations can seemingly be found in the data, but
it is difficult to truly distinguish them from potential non-stationary behavior. Here,
the empirical time series on average only cover a period of around seven days, so
we are not even able to observe a full oscillation, which makes it effectively impossi-
ble to accurately answer this question with the available data [Kantz and Schreiber
2004]. Therefore, it is definitely necessary to repeat the analysis on longer empiri-
cal time series to gain more certainty about the presented result. If it turns out that
non-stationary behavior can indeed be commonly observed in the dynamics of such
time series, appropriate modeling strategies would need to found.
Additionally, the question remains if there are truly no higher frequency patterns
present as the power spectrum would suggest. In many of the time series, we can
observe behavior at smaller time scales, but it is difficult to say if it is due to the
high stochasticity of the system or if it can be attributed to some kind of underlying
dynamics. We also need to consider that the irregular patterns might be due to some
unknown external context that can not be easily modeled as noise. For instance, an
unexpected event, such as a supervisor sending a fascinating paper or winning the
lottery, will of course have a strong impact on the emotional trajectories that cannot
be feasibly predicted by the model. Thus, it might be crucial to integrate additional
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information into the model framework, for instance provided by the smartphone
sensors, e.g. the movement patterns of a person. The EMIcompass data set also con-
tains a question on the type of social activity a person might be engaged in, which
could for instance be used as an external input for the PLRNN.
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Figure 23: Benchmark trajectories sampled from an underlying Rössler system through an
ordinal observation model.

For now, we proceed under the assumption that only low-frequency oscillations are
present in the data, and therefore attempt to induce the same time-scale in the bench-
mark data. This can be simply done by sub-sampling the generated trajectories. We
find that by taking every 30th time point, we can arrive at a similar power spectrum
for the benchmark data, see Figure 24. Finally, we mimic the day and night struc-
ture from the empirical data by introducing missing values into the time series. We
assume that each day corresponds to 16 time steps from which the last eight are set
to be missing.
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Figure 24: Power spectrum of the benchmark data (green) overlayed with the power spec-
trum from the EMIcompass data set (blue). The dotted lines indicate the maxi-
mum frequency components.
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Figure 25: The left diagram shows model performance for different training set sizes Ttrain
(M = 40, B = 10). On the right, we see the impact of the number of latent
parameters M on the error for Ttrain = 10.000.

4.3.3 Model Evaluation

Figure 23 shows two simulated trajectories covering different time periods. Only
long-term dynamics are present, and the time series are overall quite noisy. The
number of time steps of the upper trajectory corresponds to the average time frame
that the empirical time series cover, and it generally seems comparable to the
statistical difficulty of the EMIcompass dataset. Apart form the question if the right
time scales were introduced into the simulated trajectories, it is also difficult to
control the amount of noise present. Overall, the noise level is determined by the
imposed distribution of the individual Likert items, but this does not directly control
the noise at each time step. All in all, the created trajectories are very challenging,
as they are based on a chaotic system, exhibit much stochasticity, and only contain
slow moving dynamics.
Models are trained on the benchmark data with the same parameter setup described
in Section 4.2.1. Each hyper-parameter combination is evaluated by training 50
individual models and averaging the error metrics as before. Model performance is
compared to using the constant mean of the feature distributions as forecast.

The primary motivation for generating the benchmark data was to assess model per-
formance for larger amounts of training data Ttrain. As can be observed on the left in
Figure 25, increasing the number of time steps for training does indeed improve the
out-of sample error. For longer time series, the forecasts outperform the mean for up
to a 50-step ahead prediction. For longer ahead predictions the model performance
is again worse in relation to the mean forecasts. As we provide the model with up to
10.000 time steps, this definitely should not happen. Even for chaotic systems, we

78



would always want the model to at least recover the mean for long-term forecasts.
The right figure shows that even with a large amount of training data, the number
of latent dimensions has very little impact on the resulting performance. This is not
what we would necessarily expect, as we would hope that for effectively unlimited
training data and dynamical parameters the generalization error would fall further.
Tuning the MAR also has little impact on this result, see Appx. Figure 29.
Currently, the model is not able to reconstruct the dynamical system, and only man-
ages to provide a reasonable local forecast. In general, the models do not exhibit
much dynamical behavior, and the latent states mostly run into fixed-points. This
allows the model to perform short term ahead predictions when initialized correctly,
but performance than quickly falls off, as it is not able to truly recover the underlying
dynamics.
Finally, we notice that the performance of the models trained on the simulated tra-
jectories containing 100 time points is roughly equivalent to the results we observed
on the empirical data set. This might indicate that the generated benchmark data
has some correspondence with the empirical data set. On the other hand, it is impor-
tant to point out that the models trained on the EMIcompass data generally showed
more dynamical behavior, which might be due to some faster underlying dynamics
that were missed when generating the benchmark data.
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5 Discussion and Conclusion

A central goal of this thesis was to build up a model that is capable of directly
handling ordinal time series, without requiring the assumption that the data can
be approximately treated as metric or categorical. This was realized by making use
of an ordered logit model, that was integrated as an observation model into the
sequential variational autoencoder framework.
Before discussing the empirical results, it is important to mention that while the
central model components respect the ordinal character of the data, the same can
not be said for the measures that were used during the empirical evaluation. As
discussed in Section 3.3.2, the numerical encoding of the ordinal categories is
somewhat arbitrary, as we do not have information about the distances between
different items. This poses a challenge for model evaluation, as calculating the
expected value of the observation model Ep✓ (x|z)[xk+n|ẑk+n] of course implies that we
presume that the different ordinal responses are equidistant, which might simply
not be true and mislead us depending on the distribution of the relevant features.
Additionally, this makes it difficult to choose a sensible error metric, as ordinal data
is neither truly categorical nor metric. It is possible to use measures commonly used
for nominal classification, e.g. precision or the confusion matrix, but this does not
feel satisfying as we ignore the ordering in the data. In other words, it seems worse
to misclassify a very unhappy person as happy than to confuse a happy participant
with a moderately happy subject. Alternatively, we can calculate the mean squared
error (MSE), or a similar measure, but in doing so we pretend that the ordinal
classes live in an equidistant metric space, which we can not simply presuppose.
For instance, for a zero-inflated feature it should be more important for the model
to correctly discern between the first and the second category than between the
second and third, as the first jump is likely more meaningful and might hint at a
larger change in the underlying dynamics. Due to time constraints, I made the
compromise of working with the MSE, but double checked the results by calculating
the categorical precision. So far I did not encounter a situation, in which the error
measures differed significantly. Still, I would recommend that for future testing
the possibility of designing a purely ordinal evaluation method should definitely be
explored.
In the literature I reviewed I could not find a clear consensus on how to best pro-
ceed, and a variety of approaches have been proposed for evaluating ordinal data,
e.g. [Baccianella et al. 2009; Gaudette and Japkowicz 2009; Cardoso and Sousa
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2011; Amigó et al. 2020; Sakai 2021]. They all vary greatly, and also differ on the
question if equally spaced intervals can be safely assumed. This choice also likely
depends on the problem at hand, the exact distribution of the data, and might need
to be informed by domain knowledge. It might especially fruitful and interesting to
review work on how to best extract metric information from ordinal data [Shepard
1966], e.g. by exploiting the overall feature distribution to find sensible weightings
for the different intervals between the ordinal categories. It is also important to
consider that the perception of ordinal scales might vary in a participant population,
and various individuals might interpret the Likert item intervals very differently.
This might make it necessary to find a different approximation of the ordinal to the
metric scale for each participant.

In Section 4.2, the model performance was evaluated on the real-world EMIcompass
data set for several different hyper-parameter settings. Overall, the model is not able
to perform better out-of sample forecasts than the mean. In the hopes of reducing
overfitting, I introduced an additional regularization term for the observation
model, which proved to have little effect on the generalization error.
This is obviously not a very satisfying result, but it needs to be stressed that the
time series are very challenging from a statistical standpoint. As was seen, many of
the subject time series seemingly exhibit very slow time scales or irregular behavior
while at the same time being very short and containing a sizable amount of missing
values. Additionally, many of the time series show non-stationary behavior, e.g. see
Figure 11, that is difficult to distinguish from low frequency oscillations. In total, it
might just not be feasible to generate predictions that are significantly better than
the mean on the available dataset. In other words, it oftentimes seems unclear if
there is even a pattern present in the data for the model to recover.
Nevertheless, when honing in on specific features or participants, it is possible to
observe interesting dynamics that also seem to have some correspondence to the
empirical data, e.g. see Figure 14. This might indicate that for future analysis, it
is especially important to zoom in on specific participant and feature subsets that
prove to be more predictable than others.
Here, for instance we found that Likert items that are associated with negative
affects, such as loneliness or guilt, can be predicted with higher accuracy that also
surpasses the mean forecast. As a next step, it should be investigated what exactly
makes the negative emotional states easier to predict, e.g. if it is possible to find
clear similarities in their dynamical behavior. Of course such a finding would need
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to be corroborated with robust statistical testing, and should be reproduced on a
more extensive data set, but it still might give some indication in which direction
future efforts should be focused. It might also be interesting to see, if such insight
could be connected to available domain knowledge on psychological phenomena.
For instance, negative events and impressions seem to generally have a more
dominant impact on people’s behavior and emotional states [Lewicka et al. 1992;
Baumeister et al. 2001]. As mentioned before, an investigation of the features also
needs to be tied to the specific application setting. If some features prove to be less
predictable than others, they still might be very predictive for the selection of the
right interventions. In any case, a careful analysis of the different EMA features
could also provide valuable information for future studies, e.g. if a questionnaire
should specifically focus on one sub-type. Dropping some of the Likert items, could
also allow for more densely sampled trajectories, as it would take participants less
time to fill out a single questionnaire. In my opinion, a larger number of time points
is likely more important than a larger number of Likert items, as they exhibit a fair
amount of dependency and oftentimes similar time scales.
In similar fashion, one could attempt to group participants that show similarities in
their underlying dynamics. It would be extremely interesting to see, if individuals
with a comparable latent space, can also be matched according to another similarity
measure, ideally motivated by psychiatric insight. Additionally, one could check,
how much model performance varies in between subgroups. For instance, certain
dynamical patterns might be easier to predict than others, which could also inform
future model development.
In the hopes of exploiting such group similarities, I also implemented and tested
the first version of a hierarchical parameter estimation. First results did not show
much improvement on the test set, and the hierarchisation generally led to more
constant latent space dynamics. Of course, it is difficult to draw a final conclusion,
as the empirical data set is fairly limited, but I suspect that the chosen parameter
split for group and individual-level inference was still far from optimal and needs
to be further explored. For instance, it might be more sensible to at least train parts
of the parameter-rich connection matrix W on the individual level, while sharing
the thresholds of the basis expansion over the entire group. As mentioned before, it
might also be useful to group participants from larger study cohorts before training
the models [Cearns et al. 2019].
In general, it seems likely that to reach a significant performance boost on empirical
data sets, a fine-tuned hierarchisation procedure will be necessary. As seen before,
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the self-reported information of a single individual might oftentimes not be compre-
hensive enough to fully train a complicated model on. The hierarchisation might
then be a structured way to integrate group-level insight, while still allowing for
enough individual variation to construct truly personalized models, which are likely
very crucial for improving future mental health treatments [Chekroud et al. 2017].
Along the same line, it might be fruitful to find ways to integrate prior domain
knowledge from psychiatry or computational neuroscience into the model frame-
work. For instance, it might be possible to incorporate existing insight on what kind
of underlying dynamics to expect by defining sensible priors for the latent model
parameters, similar to a fully Bayesian framework [Sayer 2020]. This could also
inspire the introduction of new expressive parameters that correspond with other
subject-specific information, such as epigenetic risk factors [Keverne and Binder
2020].

In addition to the empirical investigation of the EMIcompass data set, I attempted
to create realistic benchmark data to further test the model’s capabilities on, see
Section 4.3. The underlying latent process was modeled by using the chaotic
Rössler attractor. The ordinal trajectories were then sampled through an ordered
logit model, for which the model parameters were fitted in such a way that the
overall feature distribution corresponded to the EMIcompass data set. Additionally,
I manually introduced a similar feature correlation structure as observed in the
real-world data, and attempted to mimic the dominant time scales by sub-sampling
the time series.
As discussed, it is difficult to say if the dynamics of the benchmark data are a truly
accurate representation of the real-world data. The large amount of power observed
in the low-frequency components might be a strong indication that they need to
be treated as non-stationary [Kantz and Schreiber 2004]. Additionally, I suspect
that there might be predictive behavior at smaller time scales, at least for some
individuals, that was missed when calculating the power spectrum over multiple
participants. In total, the creation of the benchmark data needs to be repeated with
better data, which should be fairly straightforward now that the process is set up. In
addition, alternative techniques for generating benchmark data could be tried out,
e.g. block bootstrapping, where a time series gets divided into multiple contiguous
blocks from which new time series can be produced by sampling with replacement
[Kreiss and Paparoditis 2011].
A preliminary evaluation of the benchmark data was performed by training multiple
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models for different training set sizes. In general, for a large enough number of
observations the model provides reasonable short-term forecasts, but falls off in
its accuracy for longer ahead predictions. It is surprising that at some point the
model performance becomes worse than the mean again, as we would expect the
model to at least recover the overall mean as a long-term forecast. In general, the
model is struggling to reconstruct the underlying Rössler dynamics, and the latent
states oftentimes become fixed-points. The exact reason why this is happening still
needs to be investigated, but it is also important to mention that while performance
is comparable for a similar training set size, the models trained on the empirical
data exhibit much more varied dynamical behavior. This might indicate that the
benchmark data still might be missing faster dynamical patterns that potentially
exist in the EMIcompass data.
It is important to note that the hierarchisation procedure was not tested on the
benchmark data. To do so in a principled manner would require adjusting the
benchmark generation process so that multiple individual time series can be created
that still share some similarities in their dynamical behavior. This could for instance
be realized by using the same underlying latent process, e.g. the Rössler attractor,
but choosing different parameter regions for each time series. It could then be
tested, if the parameter hierarchisation can recover the overall dynamical system,
and can manage to encode the differing dynamical system parameters in the
individually inferred model parameters.

Besides improving the hierarchical parameter estimation, there are also sev-
eral other changes to the model architecture that might positively impact the
empirical results. For the recognition model a completely diagonal covariance
matrix was chosen. This is likely a too simplifying assumption, and it might be
necessary to test alternative encoder models with a more complicated covariance
structure. For instance, it might be possible to combine the usage of a CNN with
the block-tridiagonal parameterization proposed in Archer et al. 2015. It might also
be fruitful to consider a recognition model that can directly handle missing values,
e.g. by making use of a PLRNN, similar to the second imputation technique that
was proposed. As long as model interpretability is a secondary goal, one could also
try out different generative models, such as LSTMs or a deep PLRNN consisting of
multiple layers.
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Overall, I think that the highest performance jump will arguably be tied to
the integration of other data modalities. As discussed before, collecting self-
reported information is difficult and costly, as the patience of participants to
answer extensive questionnaires multiple times a day will always be limited [Wen
et al. 2017]. High sampling frequencies might also become strenuous and put an
unacceptable mental burden on the user [Stone et al. 2007]. Additionally, solely
relying on self-reported data might also carry the danger of introducing biases; for
example, the validity of electronic self-monitoring of mood for patients suffering
from mania has been questioned [Faurholt-Jepsen et al. 2016].
Therefore, the usage of passively gathered sensor data might be especially appealing
for the construction of personalized models, as they can be collected without user
participation and with a much higher sampling frequency [Durstewitz et al. 2019;
Seppälä et al. 2019; Koppe et al. 2021]. A variety of smartphone-based sensor data
has been shown to be potentially predictive for mental health and general mood,
ranging from mobility patterns inferred from geo-location traces [Canzian and Mu-
solesi 2015; Mikelsons et al. 2017], application usage and communication history
[Likamwa et al. 2013], physical activity levels measured through accelerometers
[Rodriguez et al. 2017] to microphone data [Abdullah et al. 2016]. Taken together,
the integration of such rich and densely sampled sensor data might allow the
model to make better sense of the irregular patterns and non-stationary behavior
observed in the EMA trajectories, e.g. a seemingly random spike in a Likert item
might become predicable when taking into the account the unusual communication
and mobility patterns observed before. In addition to sensor data, it might also be
prudent to make better use of missing information, as mentioned in Section 3.2.2.
As discussed in Section 2.3.7, multimodal data can in principle be easily included
into the sequential variational autoencoder framework. For instance, I implemented
a version of the ZIP model, based on work from Bommer et al. 2021, that could
be used to to describe step counts measured by smartphone sensors. The main
difficulty for integrating various features will be how to deal with their varying
time scales. As mentioned, the sampling rate of sensor data will of course widely
differ from the self-reported questionnaires, making the discretization of the data
into equidistant time steps rather difficult. We then might require a specifically
structured latent model [Che et al. 2018a] or a continuous model formulation
[Chen et al. 2018; Rubanova et al. 2019; Monfared and Durstewitz 2020b] to be
able to train successfully on differently sampled data.
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Overall, the methodological approach that I started to develop in the context
of this thesis holds a lot of promise from an application perspective. It offers a
potentially useful way to forecast ordinal time series using a probabilistic deep
learning model. The insights gained during this investigation reveal fruitful direc-
tions future research can take to realize this model’s potential, not only in the field
of psychiatry, but also other fields that rely on similar kinds of data. Especially as
more and more mobile data becomes available, the need for models that solve the
problems this thesis has identified will only increase.

86



Bibliography

Likert, R. (1932). “A Technique for the Measurement of Attitudes”. Archives of Psychology 22

140, pp. 55–55.

Aitchison, J. and Silvey, S. D. (1957). “The Generalization of Probit Analysis to the Case of

Multiple Responses”. Biometrika 44:1/2, pp. 131–140. DOI: ��.����/�������.

Kalman, R. E. (1960). “A New Approach to Linear Filtering and Prediction Problems”. Journal

of Basic Engineering 82:1, pp. 35–45. DOI: ��.����/�.�������.

Lorenz, E. N. (1963). “Deterministic Nonperiodic Flow”. Journal of the Atmospheric Sciences

20:2, pp. 130–141. DOI: ��.����/����-����(����)���<����:DNF>�.�.CO;�.

Shepard, R. N. (1966). “Metric Structures in Ordinal Data”. Journal of Mathematical Psychol-

ogy 3:2, pp. 287–315. DOI: ��.����/����-����(��)�����-�.

Rössler, O. E. (1976). “An Equation for Continuous Chaos”. Physics Letters A 57:5, pp. 397–

398. DOI: ��.����/����-����(��)�����-�.

Rubin, D. B. (1976). “Inference and Missing Data”. Biometrika 63:3, pp. 581–592. DOI: ��.

����/�������.

McCullagh, P. (1980). “Regression Models for Ordinal Data”. Journal of the Royal Statistical

Society. Series B (Methodological) 42:2, pp. 109–142.

Verbrugge, L. M. (1980). “Health Diaries”. Medical Care 18:1, pp. 73–95. DOI: �� . ���� /

��������-���������-�����.

Winship, C. and Mare, R. D. (1984). “Regression Models with Ordinal Variables”. American

Sociological Review 49:4, pp. 512–525. DOI: ��.����/�������.

O’Brien, R. M. (1985). “The Relationship between Ordinal Measures and Their Underlying

Values: Why All the Disagreement?” Quality and Quantity 19:3, pp. 265–277. DOI: ��.

����/BF��������.

Csikszentmihalyi, M. and Larson, R. (1987). “Validity and Reliability of the Experience-

Sampling Method”. The Journal of Nervous and Mental Disease 175:9, pp. 526–536.

Ahmed, N. and Gokhale, D. (1989). “Entropy Expressions and Their Estimators for Mul-

tivariate Distributions”. IEEE Transactions on Information Theory 35:3, pp. 688–692.

DOI: ��.����/��.�����.

Lambert, D. (1992). “Zero-Inflated Poisson Regression, with an Application to Defects in

Manufacturing”. Technometrics 34:1, pp. 1–14. DOI: ��.����/�������.

Lewicka, M. et al. (1992). “Positive-Negative Asymmetry or ‘When the Heart Needs a Rea-

son’”. European Journal of Social Psychology 22:5, pp. 425–434. DOI: �� . ���� / ejsp .

����������.

Funahashi, K.-i. and Nakamura, Y. (1993). “Approximation of Dynamical Systems by Con-

tinuous Time Recurrent Neural Networks”. Neural Networks 6:6, pp. 801–806. DOI: ��.

����/S����-����(��)�����-X.

87

http://dx.doi.org/10.2307/2333245
http://dx.doi.org/10.1115/1.3662552
http://dx.doi.org/10.1016/0022-2496(66)90017-4
http://dx.doi.org/10.1016/0375-9601(76)90101-8
http://dx.doi.org/10.2307/2335739
http://dx.doi.org/10.2307/2335739
http://dx.doi.org/10.1097/00005650-198001000-00006
http://dx.doi.org/10.1097/00005650-198001000-00006
http://dx.doi.org/10.2307/2095465
http://dx.doi.org/10.1007/BF00170998
http://dx.doi.org/10.1007/BF00170998
http://dx.doi.org/10.1109/18.30996
http://dx.doi.org/10.2307/1269547
http://dx.doi.org/10.1002/ejsp.2420220502
http://dx.doi.org/10.1002/ejsp.2420220502
http://dx.doi.org/10.1016/S0893-6080(05)80125-X
http://dx.doi.org/10.1016/S0893-6080(05)80125-X


Molenberghs, G. and Lesaffre, E. (1994). “Marginal Modeling of Correlated Ordinal Data

Using a Multivariate Plackett Distribution”. Journal of the American Statistical Association

89:426, pp. 633–644. DOI: ��.����/�������.

Gottschalk, A. et al. (1995). “Evidence of Chaotic Mood Variation in Bipolar Disorder”.

Archives of General Psychiatry 52:11, pp. 947–959. DOI: �� . ���� / archpsyc . ���� .

��������������.

Kleijnen, J. P. and Rubinstein, R. Y. (1996). “Optimization and Sensitivity Analysis of Com-

puter Simulation Models by the Score Function Method”. European Journal of Opera-

tional Research 88:3, pp. 413–427. DOI: ��.����/����-����(��)�����-�.

Mathieson, M. (1996). “Ordered Classes and Incomplete Examples in Classification”. In: Pro-

ceedings of the 9th International Conference on Neural Information Processing Systems.

MIT Press, Denver, Colorado, pp. 550–556.

Williamson, J. and Kim, K. (1996). “A Global Odds Ratio Regression Model for Bivariate

Ordered Categorical Data from Ophthalmologic Studies”. Statistics in Medicine 15:14,

pp. 1507–1518. DOI: ��.����/(SICI)����-����(��������)��:��<����::AID-SIM���>�.�.CO;�-

Z.

Jordan, M. I. et al. (1998). “An Introduction to Variational Methods for Graphical Models”.

In: Learning in Graphical Models. Ed. by M. I. Jordan. Springer Netherlands, Dordrecht,

pp. 105–161. DOI: ��.����/���-��-���-����-�_�.

Minois, G. (1998). Geschichte der Zukunft: Orakel - Prophezeiungen - Utopien - Prognosen.

Trans. by E. Moldenhauer. Artemis & Winkler, Düsseldorf Zürich.

Böckenholt, U. (1999). “Measuring change: Mixed Markov models for ordinal panel data”.

British Journal of Mathematical and Statistical Psychology 52:1, pp. 125–136. DOI: https:

//doi.org/��.����/���������������.

Tashman, L. J. (2000). “Out-of-sample tests of forecasting accuracy: an analysis and review”.

International Journal of Forecasting 16:4, pp. 437–450. DOI: https://doi.org/��.����/

S����-����(��)�����-�.

Von Korff, M. et al. (2000). “Assessing Global Pain Severity by Self-Report in Clinical and

Health Services Research”. Spine 25:24, pp. 3140–3151.

Weinzierl, S. (2000). “Introduction to Monte Carlo Methods”. ArXiv High Energy Physics -

Phenomenology e-prints. DOI: ��.����/���-�-���-�����-�_�.

Baumeister, R. F. et al. (2001). “Bad Is Stronger than Good”. Review of General Psychology

5:4, pp. 323–370. DOI: ��.����/����-����.�.�.���.

Pruscha, H. and Göttlein, A. (2003). “Forecasting of Categorical Time Series Using a Regres-

sion Model”. 18:2, pp. 223–240. DOI: ��.����/EQC.����.���.

Goldberg, R. M. et al. (2004). “A Randomized Controlled Trial of Fluorouracil plus Leucov-

orin, Irinotecan, and Oxaliplatin Combinations in Patients with Previously Untreated

88

http://dx.doi.org/10.2307/2290866
http://dx.doi.org/10.1001/archpsyc.1995.03950230061009
http://dx.doi.org/10.1001/archpsyc.1995.03950230061009
http://dx.doi.org/10.1016/0377-2217(95)00107-7
http://dx.doi.org/10.1007/978-94-011-5014-9_5
http://dx.doi.org/https://doi.org/10.1348/000711099159008
http://dx.doi.org/https://doi.org/10.1348/000711099159008
http://dx.doi.org/https://doi.org/10.1016/S0169-2070(00)00065-0
http://dx.doi.org/https://doi.org/10.1016/S0169-2070(00)00065-0
http://dx.doi.org/10.1007/978-0-387-87837-9_1
http://dx.doi.org/10.1037/1089-2680.5.4.323
http://dx.doi.org/10.1515/EQC.2003.223


Metastatic Colorectal Cancer”. Journal of Clinical Oncology: Official Journal of the Amer-

ican Society of Clinical Oncology 22:1, pp. 23–30. DOI: ��.����/JCO.����.��.���.

Kantz, H. and Schreiber, T. (2004). Nonlinear Time Series Analysis. 2nd ed. Cambridge Uni-

versity Press, Cambridge, UK ; New York.

Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Information Science and

Statistics. Springer, New York.

Johnson, V. E. and Albert, J. H. (2006). Ordinal Data Modeling. Springer Science & Business

Media.

Lee, K. and Daniels, M. J. (2007). “A Class of Markov Models for Longitudinal Ordinal Data”.

Biometrics 63:4, pp. 1060–1067. DOI: ��.����/j.����-����.����.�����.x.

Rodrígues, G. (2007). Lecture Notes on Generalized Linear Models. Available at https://data.

princeton.edu/wws���/notes/.

Stone, A. et al. (2007). The Science of Real-Time Data Capture: Self-Reports in Health Research.

Oxford University Press.

Todem, D. et al. (2007). “Latent-Variable Models for Longitudinal Data with Bivariate Ordinal

Outcomes”. Statistics in Medicine 26:5, pp. 1034–1054. DOI: ��.����/sim.����.

Cheng, J. et al. (2008). “A Neural Network Approach to Ordinal Regression”. In: 2008 IEEE

International Joint Conference on Neural Networks (IEEE World Congress on Computa-

tional Intelligence), pp. 1279–1284. DOI: ��.����/IJCNN.����.�������.

Lee, K. and Daniels, M. J. (2008). “Marginalized Models for Longitudinal Ordinal Data with

Application to Quality of Life Studies”. Statistics in Medicine 27:21, pp. 4359–4380.

DOI: ��.����/sim.����.

Tzikas, D. G. et al. (2008). “The Variational Approximation for Bayesian Inference”. IEEE

Signal Processing Magazine 25:6, pp. 131–146. DOI: ��.����/MSP.����.������.

Baccianella, S. et al. (2009). “Evaluation Measures for Ordinal Regression”. In: 2009 Ninth

International Conference on Intelligent Systems Design and Applications, pp. 283–287.

DOI: ��.����/ISDA.����.���.

Ben-Zeev, D. et al. (2009). “Retrospective Recall of Affect in Clinically Depressed Indi-

viduals and Controls”. Cognition and Emotion 23:5, pp. 1021–1040. DOI: �� . ���� /

�����������������.

Bob, P. et al. (2009). “Chaos in schizophrenia associations, reality or metaphor?” Interna-

tional Journal of Psychophysiology 73:3, pp. 179–185. DOI: https://doi.org/��.����/j.

ijpsycho.����.��.���.

Cagnone, S. et al. (2009). “Latent Variable Models for Multivariate Longitudinal Ordinal

Responses”. British Journal of Mathematical and Statistical Psychology 62:2, pp. 401–

415. DOI: ��.����/���������X������.

89

http://dx.doi.org/10.1200/JCO.2004.09.046
http://dx.doi.org/10.1111/j.1541-0420.2007.00800.x
https://data.princeton.edu/wws509/notes/
https://data.princeton.edu/wws509/notes/
http://dx.doi.org/10.1002/sim.2599
http://dx.doi.org/10.1109/IJCNN.2008.4633963
http://dx.doi.org/10.1002/sim.3352
http://dx.doi.org/10.1109/MSP.2008.929620
http://dx.doi.org/10.1109/ISDA.2009.230
http://dx.doi.org/10.1080/02699930802607937
http://dx.doi.org/10.1080/02699930802607937
http://dx.doi.org/https://doi.org/10.1016/j.ijpsycho.2008.12.013
http://dx.doi.org/https://doi.org/10.1016/j.ijpsycho.2008.12.013
http://dx.doi.org/10.1348/000711008X320134


Ebner-Priemer, U. W. and Trull, T. J. (2009). “Ecological Momentary Assessment of Mood Dis-

orders and Mood Dysregulation”. Psychological Assessment 21:4, pp. 463–475. DOI: ��.

����/a�������.

Gaudette, L. and Japkowicz, N. (2009). “Evaluation methods for ordinal classification”. In:

Canadian conference on artificial intelligence. Springer, pp. 207–210.

Hastie, T. et al. (2009). The Elements of Statistical Learning: Data Mining, Inference, and Pre-

diction. 2nd ed. Springer Series in Statistics. Springer, New York.

Ahmed, N. K. et al. (2010). “An Empirical Comparison of Machine Learning Models for Time

Series Forecasting”. Econometric Reviews 29:5-6, pp. 594–621. DOI: ��.����/��������.

����.������.

Greene, W. H. and Hensher, D. A. (2010). Modeling Ordered Choices: A Primer. Cambridge

University Press, Cambridge. DOI: ��.����/CBO�������������.

Norman, G. (2010). “Likert Scales, Levels of Measurement and the "Laws" of Statistics”.

Advances in Health Sciences Education 15:5, pp. 625–632. DOI: ��.����/s�����-���-����-

y.

Pan, S. J. and Yang, Q. (2010). “A Survey on Transfer Learning”. IEEE Transactions on Knowl-

edge and Data Engineering 22:10, pp. 1345–1359. DOI: ��.����/TKDE.����.���.

Varin, C. and Czado, C. (2010). “A Mixed Autoregressive Probit Model for Ordinal Longitu-

dinal Data”. Biostatistics 11:1, pp. 127–138. DOI: ��.����/biostatistics/kxp���.

Cardoso, J. S. and Sousa, R. (2011). “Measuring the Performance of Ordinal Classification”.

International Journal of Pattern Recognition and Artificial Intelligence 25:08, pp. 1173–

1195. DOI: ��.����/S����������������.

Kreiss, J.-P. and Paparoditis, E. (2011). “Bootstrap Methods for Dependent Data: A Review”.

Journal of the Korean Statistical Society 40:4, pp. 357–378. DOI: ��.����/j.jkss.����.��.

���.

Yoon, J. W. et al. (2011). “Bayesian inference for an adaptive Ordered Probit model: An appli-

cation to Brain Computer Interfacing”. Neural Networks 24:7, pp. 726–734. DOI: https:

//doi.org/��.����/j.neunet.����.��.���.

Bergmeir, C. and Benítez, J. M. (2012). “On the Use of Cross-Validation for Time Series Pre-

dictor Evaluation”. Information Sciences. Data Mining for Software Trustworthiness 191,

pp. 192–213. DOI: ��.����/j.ins.����.��.���.

Bystritsky, A. et al. (2012). “Computational Non-Linear Dynamical Psychiatry: A New

Methodological Paradigm for Diagnosis and Course of Illness”. Journal of Psychiatric

Research 46:4, pp. 428–435. DOI: ��.����/j.jpsychires.����.��.���.

Devore, J. L. and Berk, K. N. (2012). Modern Mathematical Statistics with Applications. 2nd

ed. Vol. 285. Springer, New York.

Durbin, J. and Koopman, S. J. (2012). Time Series Analysis by State Space Methods. 2nd ed.

Vol. 38. Oxford Statistical Science Series. Oxford University Press, Oxford.

90

http://dx.doi.org/10.1037/a0017075
http://dx.doi.org/10.1037/a0017075
http://dx.doi.org/10.1080/07474938.2010.481556
http://dx.doi.org/10.1080/07474938.2010.481556
http://dx.doi.org/10.1017/CBO9780511845062
http://dx.doi.org/10.1007/s10459-010-9222-y
http://dx.doi.org/10.1007/s10459-010-9222-y
http://dx.doi.org/10.1109/TKDE.2009.191
http://dx.doi.org/10.1093/biostatistics/kxp042
http://dx.doi.org/10.1142/S0218001411009093
http://dx.doi.org/10.1016/j.jkss.2011.08.009
http://dx.doi.org/10.1016/j.jkss.2011.08.009
http://dx.doi.org/https://doi.org/10.1016/j.neunet.2011.03.019
http://dx.doi.org/https://doi.org/10.1016/j.neunet.2011.03.019
http://dx.doi.org/10.1016/j.ins.2011.12.028
http://dx.doi.org/10.1016/j.jpsychires.2011.10.013


Paisley, J. et al. (2012). “Variational Bayesian Inference with Stochastic Search”. Proceedings

of the 29th International Conference on Machine Learning, ICML 2012 2.

Sun, J. Z. et al. (2012). “A Framework for Bayesian Optimality of Psychophysical Laws”.

Journal of Mathematical Psychology 56:6, pp. 495–501. DOI: ��.����/j.jmp.����.��.���.

Castro, M. et al. (2013). “A Spatial Generalized Ordered Response Model to Examine High-

way Crash Injury Severity”. Accident Analysis & Prevention 52, pp. 188–203. DOI: ��.

����/j.aap.����.��.���.

Chatfield, C. (2013). The Analysis of Time Series: An Introduction, Sixth Edition. Chapman

and Hall/CRC, New York.

Donker, T. et al. (2013). “Smartphones for Smarter Delivery of Mental Health Programs: A

Systematic Review”. Journal of Medical Internet Research 15:11, e247. DOI: ��.����/jmir.

����.

Hoffman, M. D. et al. (2013). “Stochastic Variational Inference”. Journal of Machine Learning

Research 14:4, pp. 1303–1347.

Likamwa, R. et al. (2013). “MoodScope: Building a Mood Sensor from Smartphone Usage

Patterns”. In: MobiSys 2013 - Proceedings of the 11th Annual International Conference on

Mobile Systems, Applications, and Services. DOI: ��.����/�������.�������.

Varshney, L. R. and Sun, J. Z. (2013). “Why Do We Perceive Logarithmically?” Significance

10:1, pp. 28–31. DOI: ��.����/j.����-����.����.�����.x.

Gershman, S. and Goodman, N. (2014). “Amortized inference in probabilistic reasoning”.

In: Proceedings of the Annual Meeting of the Cognitive Science Society. Vol. 36.

Kingma, D. P. and Welling, M. (2014). “Auto-Encoding Variational Bayes”. In: 2nd Interna-

tional Conference on Learning Representations, ICLR 2014.

Mnih, A. and Gregor, K. (2014). “Neural Variational Inference and Learning in Belief Net-

works”. In: Proceedings of the 31th International Conference on Machine Learning, ICML

2014. Vol. 32. JMLR Workshop and Conference Proceedings. JMLR.org, pp. 1791–1799.

Rezende, D. J. et al. (2014). “Stochastic Backpropagation and Approximate Inference in

Deep Generative Models”. In: Proceedings of the 31st International Conference on Ma-

chine Learning. Vol. 32. Proceedings of Machine Learning Research 2. PMLR, pp. 1278–

1286.

Archer, E. et al. (2015). “Black Box Variational Inference for State Space Models”.

arXiv:1511.07367 [stat]. arXiv: ����.����� [stat].

Canzian, L. and Musolesi, M. (2015). “Trajectories of depression: unobtrusive monitoring

of depressive states by means of smartphone mobility traces analysis”. In: Proceedings

of the 2015 ACM international joint conference on pervasive and ubiquitous computing,

pp. 1293–1304.

Kingma, D. P. and Ba, J. (2015). “Adam: A Method for Stochastic Optimization”. In: 3rd

International Conference on Learning Representations, ICLR 2015.

91

http://dx.doi.org/10.1016/j.jmp.2012.08.002
http://dx.doi.org/10.1016/j.aap.2012.12.009
http://dx.doi.org/10.1016/j.aap.2012.12.009
http://dx.doi.org/10.2196/jmir.2791
http://dx.doi.org/10.2196/jmir.2791
http://dx.doi.org/10.1145/2462456.2464449
http://dx.doi.org/10.1111/j.1740-9713.2013.00636.x
https://arxiv.org/abs/1511.07367


Liu, J. N. et al. (2015). “Deep neural network modeling for big data weather forecasting”.

In: Information Granularity, Big Data, and Computational Intelligence. Springer, pp. 389–

408.

Moritz, S. et al. (2015). “Comparison of Different Methods for Univariate Time Series Impu-

tation in R”. arXiv:1510.03924 [cs, stat]. arXiv: ����.����� [cs, stat].

Shaikhina, T. et al. (2015). “Machine Learning for Predictive Modelling based on Small Data

in Biomedical Engineering”. IFAC-PapersOnLine 48:20, pp. 469–474. DOI: https://doi.

org/��.����/j.ifacol.����.��.���.

Abdullah, S. et al. (2016). “Automatic Detection of Social Rhythms in Bipolar Disorder”.

Journal of the American Medical Informatics Association 23:3, pp. 538–543. DOI: ��.����/

jamia/ocv���.

Cui, Z. et al. (2016). “Multi-Scale Convolutional Neural Networks for Time Series Classifica-

tion”. arXiv:1603.06995 [cs]. arXiv: ����.����� [cs].

Eleftheriadis, S. et al. (2016). “Variational Gaussian Process Auto-Encoder for Ordinal Pre-

diction of Facial Action Units”. In: Computer Vision - ACCV 2016 - 13th Asian Confer-

ence on Computer Vision. Vol. 10112. Lecture Notes in Computer Science, pp. 154–170.

DOI: ��.����/���-�-���-�����-�\_��.

Faurholt-Jepsen, M. et al. (2016). “Electronic Self-Monitoring of Mood Using IT Platforms in

Adult Patients with Bipolar Disorder: A Systematic Review of the Validity and Evidence”.

BMC Psychiatry 16:1, p. 7. DOI: ��.����/s�����-���-����-�.

Gutiérrez, P. A. et al. (2016). “Ordinal Regression Methods: Survey and Experimental Study”.

IEEE Transactions on Knowledge and Data Engineering 28:1, pp. 127–146. DOI: ��.����/

TKDE.����.�������.

Myin-Germeys, I. et al. (2016). “Ecological Momentary Interventions in Psychiatry”. Current

Opinion in Psychiatry 29:4, pp. 258–263. DOI: ��.����/YCO.����������������.

Sathyanarayana, A. et al. (2016). “Sleep Quality Prediction From Wearable Data Using Deep

Learning”. JMIR mHealth and uHealth 4:4, e125. DOI: ��.����/mhealth.����.

Weiss, K. et al. (2016). “A Survey of Transfer Learning”. Journal of Big Data 3:1, p. 9. DOI: ��.

����/s�����-���-����-�.

Blei, D. M. et al. (2017). “Variational Inference: A Review for Statisticians”. Journal of the

American Statistical Association 112:518, pp. 859–877. DOI: �� . ���� / �������� . ���� .

�������. arXiv: ����.�����.

Chekroud, A. M. et al. (2017). “Computational Psychiatry: Embracing Uncertainty and Fo-

cusing on Individuals, Not Averages”. Biological Psychiatry 82:6, e45–e47. DOI: ��.����/

j.biopsych.����.��.���.

Durstewitz, D. (2017a). “A state space approach for piecewise-linear recurrent neural net-

works for identifying computational dynamics from neural measurements”. PLOS Com-

putational Biology 13:6, pp. 1–33. DOI: ��.����/journal.pcbi.�������.

92

https://arxiv.org/abs/1510.03924
http://dx.doi.org/https://doi.org/10.1016/j.ifacol.2015.10.185
http://dx.doi.org/https://doi.org/10.1016/j.ifacol.2015.10.185
http://dx.doi.org/10.1093/jamia/ocv200
http://dx.doi.org/10.1093/jamia/ocv200
https://arxiv.org/abs/1603.06995
http://dx.doi.org/10.1186/s12888-016-0713-0
http://dx.doi.org/10.1109/TKDE.2015.2457911
http://dx.doi.org/10.1109/TKDE.2015.2457911
http://dx.doi.org/10.1097/YCO.0000000000000255
http://dx.doi.org/10.2196/mhealth.6562
http://dx.doi.org/10.1186/s40537-016-0043-6
http://dx.doi.org/10.1186/s40537-016-0043-6
http://dx.doi.org/10.1080/01621459.2017.1285773
http://dx.doi.org/10.1080/01621459.2017.1285773
https://arxiv.org/abs/1601.00670
http://dx.doi.org/10.1016/j.biopsych.2017.07.011
http://dx.doi.org/10.1016/j.biopsych.2017.07.011
http://dx.doi.org/10.1371/journal.pcbi.1005542


Durstewitz, D. (2017b). Advanced Data Analysis in Neuroscience. Bernstein Series in Compu-

tational Neuroscience. Springer, Cham. DOI: ��.����/���-�-���-�����-�.

Kim, S. (2017). “Ordinal Time Series Model for Forecasting Air Quality Index for Ozone in

Southern California”. Environmental Modeling & Assessment 22. DOI: ��.����/s�����-���-

����-�.

Mikelsons, G. et al. (2017). “Towards Deep Learning Models for Psychological State Pre-

diction Using Smartphone Data: Challenges and Opportunities”. arXiv:1711.06350 [cs,
stat]. arXiv: ����.����� [cs, stat].

Pedersen, A. et al. (2017). “Missing Data and Multiple Imputation in Clinical Epidemiological

Research”. Clinical Epidemiology Volume 9, pp. 157–166. DOI: ��.����/CLEP.S������.

Rodriguez, S. S. et al. (2017). “Mobile Sensing at the Service of Mental Well-being: a Large-

scale Longitudinal Study”. In: Proceedings of the 26th International Conference on World

Wide Web, WWW 2017. ACM, pp. 103–112. DOI: ��.����/�������.�������.

Shumway, R. H. and Stoffer, D. S. (2017). Time Series Analysis and Its Applications: With R

Examples. Springer Texts in Statistics. Springer International Publishing, Cham. DOI: ��.

����/���-�-���-�����-�.

Suhara, Y. et al. (2017). “DeepMood: Forecasting Depressed Mood Based on Self-Reported

Histories via Recurrent Neural Networks”. In: Proceedings of the 26th International Con-

ference on World Wide Web, WWW 2017. ACM, pp. 715–724. DOI: �� . ���� / ������� .

�������.

Wen, C. K. F. et al. (2017). “Compliance With Mobile Ecological Momentary Assessment Pro-

tocols in Children and Adolescents: A Systematic Review and Meta-Analysis”. Journal of

Medical Internet Research 19:4, e132. DOI: ��.����/jmir.����.

Zhao, B. et al. (2017). “Convolutional Neural Networks for Time Series Classification”. Jour-

nal of Systems Engineering and Electronics 28:1, pp. 162–169. DOI: ��.�����/JSEE.����.

��.��.

Blazquez, D. and Domenech, J. (2018). “Big Data Sources and Methods for Social and Eco-

nomic Analyses”. Technological Forecasting and Social Change 130, pp. 99–113. DOI: ��.

����/j.techfore.����.��.���.

Che, Z. et al. (2018a). “Hierarchical Deep Generative Models for Multi-Rate Multivariate

Time Series”. In: Proceedings of the 35th International Conference on Machine Learning,

ICML 2018. Vol. 80. Proceedings of Machine Learning Research. PMLR, pp. 783–792.

Che, Z. et al. (2018b). “Recurrent Neural Networks for Multivariate Time Series with Missing

Values”. Scientific Reports 8:1, p. 6085. DOI: ��.����/s�����-���-�����-�.

Chen, T. Q. et al. (2018). “Neural Ordinary Differential Equations”. In: Advances in Neural

Information Processing Systems 31, NeurIPS 2018.

93

http://dx.doi.org/10.1007/978-3-319-59976-2
http://dx.doi.org/10.1007/s10666-016-9521-7
http://dx.doi.org/10.1007/s10666-016-9521-7
https://arxiv.org/abs/1711.06350
http://dx.doi.org/10.2147/CLEP.S129785
http://dx.doi.org/10.1145/3038912.3052618
http://dx.doi.org/10.1007/978-3-319-52452-8
http://dx.doi.org/10.1007/978-3-319-52452-8
http://dx.doi.org/10.1145/3038912.3052676
http://dx.doi.org/10.1145/3038912.3052676
http://dx.doi.org/10.2196/jmir.6641
http://dx.doi.org/10.21629/JSEE.2017.01.18
http://dx.doi.org/10.21629/JSEE.2017.01.18
http://dx.doi.org/10.1016/j.techfore.2017.07.027
http://dx.doi.org/10.1016/j.techfore.2017.07.027
http://dx.doi.org/10.1038/s41598-018-24271-9


Christensen, R. (2018). Cumulative Link Models for Ordinal Regression with the R Package

Ordinal. Available at https://cran.r-project.org/web/packages/ordinal/vignettes/clm_

article.pdf.

Cremer, C. et al. (2018). “Inference Suboptimality in Variational Autoencoders”. In: Pro-

ceedings of the 35th International Conference on Machine Learning, ICML 2018. Vol. 80.

Proceedings of Machine Learning Research. PMLR, pp. 1086–1094.

Dwyer, D. B. et al. (2018). “Machine Learning Approaches for Clinical Psychology and Psy-

chiatry”. Annual Review of Clinical Psychology 14:1, pp. 91–118. DOI: ��.����/annurev-

clinpsy-������-������.

Guo, Z. et al. (2018). “A deep learning model for short-term power load and probability

density forecasting”. Energy 160, pp. 1186–1200. DOI: https : / / doi . org/ �� . ���� / j .

energy.����.��.���.

Hirk, R. et al. (2018). “Multivariate Ordinal Regression Models: An Analysis of Corporate

Credit Ratings”. Statistical Methods & Applications 28, pp. 1–33. DOI: ��.����/s�����-

���-�����-�.

Hyndman, R. J. and Athanasopoulos, G. (2018). Forecasting: Principles and Practice. 3rd ed.

OTexts: Melbourne, Australia. OTexts.com/fpp3.

Jaskari, J. and Kivinen, J. J. (2018). “A Novel Variational Autoencoder with Applications

to Generative Modelling, Classification, and Ordinal Regression”. arXiv:1812.07352 [cs,
stat]. arXiv: ����.����� [cs, stat].

Liddell, T. M. and Kruschke, J. K. (2018). “Analyzing Ordinal Data with Metric Models: What

Could Possibly Go Wrong?” Journal of Experimental Social Psychology 79, pp. 328–348.

DOI: ��.����/j.jesp.����.��.���.

Myin-Germeys, I. et al. (2018). “Experience Sampling Methodology in Mental Health Re-

search: New Insights and Technical Developments”. World Psychiatry 17:2, pp. 123–132.

DOI: ��.����/wps.�����.

Wang, Y. et al. (2018). “Big Data Analytics: Understanding Its Capabilities and Potential

Benefits for Healthcare Organizations”. Technological Forecasting and Social Change 126,

pp. 3–13. DOI: ��.����/j.techfore.����.��.���.

Zhang, Y. and Ling, C. (2018). “A Strategy to Apply Machine Learning to Small Datasets in

Materials Science”. npj Computational Materials 4:1, pp. 1–8. DOI: ��.����/s�����-���-

����-z.

Belkin, M. et al. (2019). “Reconciling Modern Machine-Learning Practice and the Classi-

cal Bias–Variance Trade-Off”. Proceedings of the National Academy of Sciences 116:32,

pp. 15849–15854. DOI: ��.����/pnas.����������.

Cearns, M. et al. (2019). “Recommendations and Future Directions for Supervised Machine

Learning in Psychiatry”. Translational Psychiatry 9:1, pp. 1–12. DOI: ��.����/s�����-���-

����-�.

94

https://cran.r-project.org/web/packages/ordinal/vignettes/clm_article.pdf
https://cran.r-project.org/web/packages/ordinal/vignettes/clm_article.pdf
http://dx.doi.org/10.1146/annurev-clinpsy-032816-045037
http://dx.doi.org/10.1146/annurev-clinpsy-032816-045037
http://dx.doi.org/https://doi.org/10.1016/j.energy.2018.07.090
http://dx.doi.org/https://doi.org/10.1016/j.energy.2018.07.090
http://dx.doi.org/10.1007/s10260-018-00437-7
http://dx.doi.org/10.1007/s10260-018-00437-7
https://arxiv.org/abs/1812.07352
http://dx.doi.org/10.1016/j.jesp.2018.08.009
http://dx.doi.org/10.1002/wps.20513
http://dx.doi.org/10.1016/j.techfore.2015.12.019
http://dx.doi.org/10.1038/s41524-018-0081-z
http://dx.doi.org/10.1038/s41524-018-0081-z
http://dx.doi.org/10.1073/pnas.1903070116
http://dx.doi.org/10.1038/s41398-019-0607-2
http://dx.doi.org/10.1038/s41398-019-0607-2


Colombo, D. et al. (2019). “Current State and Future Directions of Technology-Based Eco-

logical Momentary Assessment and Intervention for Major Depressive Disorder: A Sys-

tematic Review”. Journal of Clinical Medicine 8:4, p. 465. DOI: ��.����/jcm�������.

Durstewitz, D. et al. (2019). “Deep Neural Networks in Psychiatry”. Molecular Psychiatry

24:11, pp. 1583–1598. DOI: ��.����/s�����-���-����-�.

Kim, J.-C. and Chung, K. (2019). “Prediction Model of User Physical Activity Using Data

Characteristics-based Long Short-term Memory Recurrent Neural Networks”. KSII Trans-

actions on Internet and Information Systems 13:4, pp. 2060–2077.

Kingma, D. P. and Welling, M. (2019). “An Introduction to Variational Autoencoders”. Foun-

dations and Trends in Machine Learning 12:4, pp. 307–392. DOI: ��.����/����������.

arXiv: ����.�����.

Koppe, G. et al. (2019a). “Identifying Nonlinear Dynamical Systems via Generative Recurrent

Neural Networks with Applications to fMRI”. PLOS Computational Biology 15:8. Ed. by

L. Isik, e1007263. DOI: ��.����/journal.pcbi.�������.

Koppe, G. et al. (2019b). “Recurrent Neural Networks in Mobile Sampling and Intervention”.

Schizophrenia Bulletin 45:2, pp. 272–276. DOI: ��.����/schbul/sby���.

Rubanova, Y. et al. (2019). “Latent ODEs for Irregularly-Sampled Time Series”.

arXiv:1907.03907 [cs, stat]. arXiv: ����.����� [cs, stat].

Seppälä, J. et al. (2019). “Mobile Phone and Wearable Sensor-Based mHealth Approaches

for Psychiatric Disorders and Symptoms: Systematic Review”. JMIR mental health 6:2,

e9819. DOI: ��.����/mental.����.

Tran, T. D. et al. (2019). “Modeling local dependence in latent vector autoregressive models”.

Biostatistics 22:1, pp. 148–163. DOI: ��.����/biostatistics/kxz���.

Triantafillou, S. et al. (2019). “Relationship Between Sleep Quality and Mood: Ecological

Momentary Assessment Study”. JMIR Mental Health 6:3, e12613. DOI: ��.����/�����.

Umematsu, T. et al. (2019). “Improving Students’ Daily Life Stress Forecasting Using LSTM

Neural Networks”. In: 2019 IEEE EMBS International Conference on Biomedical Health

Informatics (BHI), pp. 1–4. DOI: ��.����/BHI.����.�������.

Amigó, E. et al. (2020). “An Effectiveness Metric for Ordinal Classification: Formal Properties

and Experimental Results”. In: Proceedings of the 58th Annual Meeting of the Association

for Computational Linguistics, ACL 2020, pp. 3938–3949. DOI: ��.�����/v�/����.acl-

main.���.

Bärwolff, G. (2020). “Numerische Lösung stochastischer Differentialgleichungen”. In: Nu-

merik für Ingenieure, Physiker und Informatiker. Springer, Berlin, Heidelberg, pp. 361–

388. DOI: ��.����/���-�-���-�����-�_��.

Brown, T. B. et al. (2020). “Language Models are Few-Shot Learners”. In: Advances in Neural

Information Processing Systems 33, NeurIPS 2020.

95

http://dx.doi.org/10.3390/jcm8040465
http://dx.doi.org/10.1038/s41380-019-0365-9
http://dx.doi.org/10.1561/2200000056
https://arxiv.org/abs/1906.02691
http://dx.doi.org/10.1371/journal.pcbi.1007263
http://dx.doi.org/10.1093/schbul/sby171
https://arxiv.org/abs/1907.03907
http://dx.doi.org/10.2196/mental.9819
http://dx.doi.org/10.1093/biostatistics/kxz021
http://dx.doi.org/10.2196/12613
http://dx.doi.org/10.1109/BHI.2019.8834624
http://dx.doi.org/10.18653/v1/2020.acl-main.363
http://dx.doi.org/10.18653/v1/2020.acl-main.363
http://dx.doi.org/10.1007/978-3-662-61734-2_10


Fortuin, V. et al. (2020). “GP-VAE: Deep Probabilistic Time Series Imputation”. In: The 23rd

International Conference on Artificial Intelligence and Statistics, AISTATS 2020. Vol. 108.

Proceedings of Machine Learning Research. PMLR, pp. 1651–1661.

Keverne, J. and Binder, E. B. (2020). “A Review of Epigenetics in Psychiatry: Focus on En-

vironmental Risk Factors”. Medizinische Genetik 32:1, pp. 57–64. DOI: ��.����/medgen-

����-����.

Li, S. C.-X. and Marlin, B. M. (2020). “Learning from Irregularly-Sampled Time Series: A

Missing Data Perspective”. In: Proceedings of the 37th International Conference on Ma-

chine Learning, ICML 2020. Vol. 119. Proceedings of Machine Learning Research. PMLR,

pp. 5937–5946.

Little, R. J. and Rubin, D. B. (2020). Statistical analysis with missing data. John Wiley & Sons.

Monfared, Z. and Durstewitz, D. (2020a). “Existence of N-Cycles and Border-Collision Bi-

furcations in Piecewise-Linear Continuous Maps with Applications to Recurrent Neural

Networks”. Nonlinear Dynamics 101:2, pp. 1037–1052. DOI: ��.����/s�����-���-�����-x.

Monfared, Z. and Durstewitz, D. (2020b). “Transformation of ReLU-based Recurrent Neural

Networks from Discrete-Time to Continuous-Time”. In: Proceedings of the 37th Interna-

tional Conference on Machine Learning. PMLR, pp. 6999–7009.

Nazábal, A. et al. (2020). “Handling incomplete heterogeneous data using VAEs”. Pattern

Recognit. 107, p. 107501. DOI: ��.����/j.patcog.����.������.

Sayer, R. (2020). “Bayesian Variational Inference for Piecewise-Linear Recurrent Neural Net-

works”. MA thesis. Heidelberg: University of Heidelberg.

Sezer, O. B. et al. (2020). “Financial Time Series Forecasting with Deep Learning : A Sys-

tematic Literature Review: 2005–2019”. Applied Soft Computing 90, p. 106181. DOI: ��.

����/j.asoc.����.������.

Thieme, A. et al. (2020). “Machine Learning in Mental Health: A Systematic Review of the

HCI Literature to Support the Development of Effective and Implementable ML Sys-

tems”. ACM Transactions on Computer-Human Interaction 27:5, 34:1–34:53. DOI: ��.

����/�������.

Wang, L. et al. (2020). “Sex Trafficking Detection with Ordinal Regression Neural Networks”.

arXiv:1908.05434 [cs, stat]. arXiv: ����.����� [cs, stat].

Bommer, P. L. et al. (2021). “Identifying Nonlinear Dynamical Systems from Multi-Modal

Time Series Data”. arXiv:2111.02922 [cs, q-bio, stat]. arXiv: ����.����� [cs, q-bio, stat].

Brenner, M. et al. (2021). Tractable Dendritic RNNs for Identifying Unknown Nonlinear Dy-

namical Systems. Available at https://openreview.net/forum?id=AVShGWiL�z.

Dai, Z. et al. (2021). “CoAtNet: Marrying Convolution and Attention for All Data Sizes”.

arXiv:2106.04803 [cs]. arXiv: ����.����� [cs].

96

http://dx.doi.org/10.1515/medgen-2020-2004
http://dx.doi.org/10.1515/medgen-2020-2004
http://dx.doi.org/10.1007/s11071-020-05841-x
http://dx.doi.org/10.1016/j.patcog.2020.107501
http://dx.doi.org/10.1016/j.asoc.2020.106181
http://dx.doi.org/10.1016/j.asoc.2020.106181
http://dx.doi.org/10.1145/3398069
http://dx.doi.org/10.1145/3398069
https://arxiv.org/abs/1908.05434
https://arxiv.org/abs/2111.02922
https://openreview.net/forum?id=AVShGWiL9z
https://arxiv.org/abs/2106.04803


Durstewitz, D. et al. (2021). “Psychiatric Illnesses as Disorders of Network Dynamics”. Bio-

logical Psychiatry: Cognitive Neuroscience and Neuroimaging 6:9, pp. 865–876. DOI: ��.

����/j.bpsc.����.��.���.

Girin, L. et al. (2021). “Dynamical Variational Autoencoders: A Comprehensive Review”.

Foundations and Trends in Machine Learning 15:1-2, pp. 1–175. DOI: ��.����/����������.

arXiv: ����.�����.

Koppe, G. et al. (2021). “Deep Learning for Small and Big Data in Psychiatry”. Neuropsy-

chopharmacology 46:1, pp. 176–190. DOI: ��.����/s�����-���-����-z.

Lim, B. and Zohren, S. (2021). “Time-Series Forecasting with Deep Learning: A Survey”.

Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering

Sciences 379:2194, p. 20200209. DOI: ��.����/rsta.����.����.

Monfared, Z. et al. (2021). “How to Train RNNs on Chaotic Data?” arXiv:2110.07238 [cs,
math, stat]. arXiv: ����.����� [cs, math, stat].

Nakkiran, P. et al. (2021). “Deep Double Descent: Where Bigger Models and More Data Hurt”.

Journal of Statistical Mechanics: Theory and Experiment 2021:12, p. 124003. DOI: ��.

����/����-����/ac�a��.

Ortiz, A. et al. (2021). “The Futility of Long-Term Predictions in Bipolar Disorder: Mood

Fluctuations Are the Result of Deterministic Chaotic Processes”. International Journal of

Bipolar Disorders 9:1, p. 30. DOI: ��.����/s�����-���-�����-�.

Rauschenberg, C. et al. (2021a). “Living Lab AI4U - Artificial Intelligence for Personalized

Digital Mental Health Promotion and Prevention in Youth”. European Journal of Public

Health 31:Supplement_3, ckab164.746. DOI: ��.����/eurpub/ckab���.���.

Rauschenberg, C. et al. (2021b). “A Compassion-Focused Ecological Momentary Intervention

for Enhancing Resilience in Help-Seeking Youth: Uncontrolled Pilot Study”. JMIR Mental

Health 8:8, e25650. DOI: ��.����/�����.

Sakai, T. (2021). “Evaluating Evaluation Measures for Ordinal Classification and Ordinal

Quantification”. In: Proceedings of the 59th Annual Meeting of the Association for Com-

putational Linguistics and the 11th International Joint Conference on Natural Language

Processing, ACL/IJCNLP 2021, pp. 2759–2769. DOI: ��.�����/v�/����.acl-long.���.

Schick, A. et al. (2021). “Effects of a Novel, Transdiagnostic, Hybrid Ecological Momen-

tary Intervention for Improving Resilience in Youth (EMIcompass): Protocol for an Ex-

ploratory Randomized Controlled Trial”. JMIR research protocols 10:12, e27462. DOI: ��.

����/�����.

Schmidt, D. et al. (2021). “Identifying nonlinear dynamical systems with multiple time scales

and long-range dependencies”. In: 9th International Conference on Learning Representa-

tions, ICLR 2021.

97

http://dx.doi.org/10.1016/j.bpsc.2020.01.001
http://dx.doi.org/10.1016/j.bpsc.2020.01.001
http://dx.doi.org/10.1561/2200000089
https://arxiv.org/abs/2008.12595
http://dx.doi.org/10.1038/s41386-020-0767-z
http://dx.doi.org/10.1098/rsta.2020.0209
https://arxiv.org/abs/2110.07238
http://dx.doi.org/10.1088/1742-5468/ac3a74
http://dx.doi.org/10.1088/1742-5468/ac3a74
http://dx.doi.org/10.1186/s40345-021-00235-3
http://dx.doi.org/10.1093/eurpub/ckab164.746
http://dx.doi.org/10.2196/25650
http://dx.doi.org/10.18653/v1/2021.acl-long.214
http://dx.doi.org/10.2196/27462
http://dx.doi.org/10.2196/27462


Shi, Y. et al. (2021). “Relating by Contrasting: A Data-efficient Framework for Multimodal

Generative Models”. In: 9th International Conference on Learning Representations, ICLR

2021.

Sükei, E. et al. (2021). “Predicting Emotional States Using Behavioral Markers Derived From

Passively Sensed Data: Data-Driven Machine Learning Approach”. JMIR mHealth and

uHealth 9:3, e24465. DOI: ��.����/�����.

Tombolini, C. (2021). “Non-Linear Dynamical System Identification from Multimodal Time

Series”. MA thesis. Heidelberg: University of Heidelberg.

Warkentin, P. A. (2021). “Oscillatory Pre-Training for the Reconstruction of Dynamical Sys-

tems in Recurrent Neural Networks”. MA thesis. Heidelberg: University of Heidelberg.

Zhang, C. et al. (2021). “Understanding Deep Learning (Still) Requires Rethinking General-

ization”. Communications of the ACM 64:3, pp. 107–115. DOI: ��.����/�������.

Lu, F. et al. (2022). “Continuously Generalized Ordinal Regression for Linear and Deep Mod-

els”. arXiv:2202.07005 [cs]. arXiv: ����.����� [cs].

98

http://dx.doi.org/10.2196/24465
http://dx.doi.org/10.1145/3446776
https://arxiv.org/abs/2202.07005


Appendix

99



2 4 60.0

0.2

0.4

0.6

2 4 6 2 4 6 2 4 6

2 4 60.0

0.2

0.4

0.6

2 4 6 2 4 6 2 4 6

2 4 60.0

0.2

0.4

0.6

2 4 6 2 4 6 2 4 6

2 4 60.0

0.2

0.4

0.6

2 4 6 2 4 6 2 4 6

Figure 26: The histograms show that the overall distribution of the ordinal features in the
benchmark data perfectly matches with the empirically observed distributions of
the Likert items in the EMIcompass data, see Figure 9.
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Figure 27: The Spearman rank order correlation matrix of the benchmark data shows good
agreement with the correlation structure extracted from the EMIcompass data,
see Figure 12.
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Figure 28: Power spectrum of the EMIcompass data smoothed by a Gaussian kernel. The
dotted red line indicates the maximum frequency component.

102



0 20 40 60 80 100
n-steps

�1.0

�0.5

0.0

0.5

1.0
test

�MAR

0.1

1.0

10.0

100.0

(a) RMSEmodel
n �RMSEmean

n

0 20 40 60 80 100
n-steps

�1.0

�0.5

0.0

0.5

1.0
test

Mreg

M

0.3

0.5

1.0

(b) RMSEmodel
n �RMSEmean

n

Figure 29: Model performance on benchmark data (Ttrain = 10.000) for different MAR set-
tings. Left: MMAR

M = 0.3, Right: �MAR = 1.0.
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